
Magic Markup: Maintaining Document-External Markup with an
LLM

Edward Misback
misback@cs.washington.edu
University of Washington

Seattle, USA

Zachary Tatlock
ztatlock@cs.washington.edu
University of Washington

Seattle, USA

Steven L. Tanimoto
tanimoto@cs.washington.edu
University of Washington

Seattle, USA

ABSTRACT
Text documents, including programs, typically have human-readable
semantic structure. Historically, programmatic access to these se-
mantics has required explicit in-document tagging. Especially in
systems where the text has an execution semantics, this means it is
an opt-in feature that is hard to support properly. Today, language
models offer a new method: metadata can be bound to entities in
changing text using a model’s human-like understanding of se-
mantics, with no requirements on the document structure. This
method expands the applications of document annotation, a funda-
mental operation in program writing, debugging, maintenance, and
presentation. We contribute a system that employs an intelligent
agent to re-tag modified programs, enabling rich annotations to
automatically follow code as it evolves. We also contribute a formal
problem definition, an empirical synthetic benchmark suite, and
our benchmark generator. Our system achieves an accuracy of 90%
on our benchmarks and can replace a document’s tags in parallel
at a rate of 5 seconds per tag. While there remains significant room
for improvement, we find performance reliable enough to justify
further exploration of applications.

CCS CONCEPTS
• Software and its engineering→ Software evolution; Docu-
mentation; • Information systems→ Document representa-
tion.

KEYWORDS
Document Annotation, Document Representation, Markup, Pro-
gramming Systems, Language Models, Code Generation

ACM Reference Format:
Edward Misback, Zachary Tatlock, and Steven L. Tanimoto. 2024. Magic
Markup: Maintaining Document-External Markup with an LLM. In Com-
panion Proceedings of the 8th International Conference on the Art, Science,
and Engineering of Programming (‹Programming›Companion ’24), March
11–15, 2024, Lund, Sweden. ACM, New York, NY, USA, 10 pages. https:
//doi.org/10.1145/3660829.3660836

This work is licensed under a Creative Commons Attribution-Share Alike
International 4.0 License.

‹Programming›Companion ’24, March 11–15, 2024, Lund, Sweden
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0634-9/24/03
https://doi.org/10.1145/3660829.3660836

1 INTRODUCTION
1.1 Problem Statement
Document markup allows a number of powerful behaviors related
to tagging text with metadata. As an example of the impact of
markup, Hypertext Markup Language (HTML) is famously the
backbone of the World Wide Web, which is formed by hyperlink
annotations that tag some piece of text in one document, called
anchor text, with a link to a related document[1]. A curious reader
might wonder: has markup led to changes of a similar scale in the
realm of software engineering?

In software engineering, code comments are a simple way of
marking a document with miscellaneous helpful information. More
extended systems for attaching data to code also exist–systems in
the domain of literate programming integrate information about
code with the text of the code itself, and rely on markup to accom-
plish this[7]. Perhaps the JSON files backing Jupyter notebooks can
also be considered a form of markup document, if the code that
runs is taken as “the document.”

However, if we think of markup as a basic primitive for working
with and referring to text, and think further about the universality
of text as an interface in programming, we should be surprised to
find that this primitive is almost universally unsupported, even in
advanced live programming environments. For code in particular,
there is no standard for attaching metadata like code review history
and example data to a particular point in the text. We attempt to
explain why below.

A principal challenge in designing a document markup system is
maintaining the correct positions of text tags when the underlying
content that the markup refers to is edited. This is called annotation
anchoring. The simplest solution to this problem is to include the
tags in the document text itself, as in HTML or standard code com-
ments. This requires no special programming tools, but it burdens
the document’s reader (whether human or computer) with distin-
guishing content from metadata, so it isn’t suitable for documents
with many layers of extensive annotation–imagine a line of code
with comments left by 10 different people for completely different
purposes. The second-simplest solution to this problem is to man-
age document edits through a special program like a "What You See
Is What You Get" (WYSIWYG) editor that shows only the document
content (with the effects of markup metadata) while managing the
positions of tags behind the scenes. The Microsoft Word document
system is an example of this second solution, and also shows its
downsides: the cost of building and maintaining a special editor
that acts the way a human expects is significant, and it also locks
the programmer into always using a particular editor. Very few
editors can operate on Microsoft Word documents.

https://orcid.org/0009-0003-9474-0826
https://orcid.org/0000-0002-4731-0124
https://orcid.org/0000-0002-8175-7456
https://doi.org/10.1145/3660829.3660836
https://doi.org/10.1145/3660829.3660836
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.1145/3660829.3660836

‹Programming›Companion ’24, March 11–15, 2024, Lund, Sweden Misback et al.

This paper advances a third solution to the problem. Prior au-
thors have considered the idea of attaching external annotations
to programming systems with text anchoring–methods that relate
metadata kept in a separate file to a point in the code using text sim-
ilarity. These systems are useful, but fail after the text has changed
enough (for example, when the names of variables in a program
have changed, or when a loop has been vectorized), even when a
human could still find a reasonable new position for the annotation
using their understanding of the text’s syntax and semantics. As
such, serious infrastructure to support ubiquitous external annota-
tions has not been feasible.

This third solution is the only fully general solution for program-
ming systems and other systems with restrictions on the structure
of text in the file. For example, many configuration files are stored
as JSON, which simply does not support comments at all in its
formal standard. Further, all files presented through a plain text
editor have implicit restrictions based on what can reasonably fit
in the editor’s viewable buffer.

To address this issue, we propose magic markup: markup main-
tained separately from the document by a semantics-aware system
that “magically” handles re-tagging after document updates. What
would it mean to be able to keep markup off of a document, and
what would it mean to be able to mark up code?

1.2 User Story
To illustrate how we imagine external annotations being used, we
present a user story involving two programmers.

Barbara is a senior data scientist who has received an informal
code review request from Alex, a junior developer in the same
company. Alex has updated the code of a particular function in the
production code base responsible for an image classification task.
This code includes an image transformation pipeline with subparts
that are known to be performance-intensive.

Barbara begins by pulling Alex’s changes and opening the up-
dated file in her editor. The code review request appears in Barbara’s
editor as a set of annotations next to the file. Alex intends these
annotations as review requests for Barbara only. These are user-
directed comments stored in a separate database (that was pulled
with the code) and attached to the document via an external anno-
tation system. As they are not part of the file, unlike normal code
comments, they can be hidden by default or even locked for every-
one but Barbara. As Barbara begins to edit the document to address
issues she sees in the changes, the comments remain attached to
the entities she would expect. Even when she vectorizes a loop that
Alex mentioned he was uncertain about, completely changing its
text, the document’s tag maintainer—an intelligent agent backed
by a language model—knows the vectorized code is intended to
replace the loop, and the comment remains in the right place until
she marks the concern as completed. She knows Alex will easily
locate her update through the resolved comment, even though she
has also moved the vectorized code into a separate function.

She notices that Alex added a new nested lambda function that
introduces additional image processing. She isn’t familiar with the
method Alex used, but fortunately, Alex annotated this part of the
pipeline with some example data, and she looks at the cached output
image visualization annotation for a moment before it updates with

the new output from the out-of-context execution of her own system
on just the lambda function with Alex’s example data. Barbara
remembers the days when she would have had to copy this code
out into a REPL or a notebook and synthesize example data herself
just to check its behavior and throw it all away afterward. The
behavior of this section is still a little unclear for quick reading,
though, so she selects the section and asks a language model to
generate a short clear dynamic explanation of its function that will
continue to apply as the code base evolves.

Barbara looks at the next part of the new code–a loop body with
a performance concern. She decides that she will have to check on
this part herself, so she selects the section and asks her editor to run
just that section with the output from Alex’s section and time its
performance across 5 executions. The performance is not as good as
it should be, and she realizes Alex’s output image is unnecessarily
high-resolution. She quickly fixes this, and in response, the output
image updates and the execution time drops. She asks her editor
to warn the programmer if this example execution time ever goes
above 20 milliseconds, as that probably would have helped Alex.
This annotation automatically becomes part of the document’s
performance overlay, which is different from the presentation overlay
she uses when walking new developers through the code. Again,
she remembers how troublesome it would have previously been to
unit test this loop body.

Barbara also notices an edit to a data structure that she realizes
it would be best to mark as off-limits to the junior developers on
the team. She adds a note that all of the junior developers will see
when opening that section of the code.

Alex’s change introduces a new option for the image processor,
and Barbara follows a new documentation link on the option to
the relevant documentation section Alex added for this. The docu-
mentation links back to particular code blocks Alex added when
referencing implementation details.

Having a last quick look through the file, Barbara finally fixes the
first minor issue she noticed–there was a typo that broke parsing at
the top of the file. This didn’t matter for any of her other interactions
with the file, since it wasn’t in the annotated sections and didn’t
affect the segment-specific executions.

All of Barbara’s notes and tests from the review can be consulted
by any team member later, with the new annotations laid out on a
timeline that reconstructs Barbara’s thought process as she worked
with the code.

Even if someone edits the file in an unsupported editor, Barbara’s
team trusts the tag maintainer to correctly re-tag the document
afterward without any issues, flagging any seriously ambiguous
re-taggings for their review. The platform-independence of the
tag system lets them forget about the tags when they don’t need
the extra information, and even lets them maintain annotations
on the source code of an independent code base for one of their
dependencies that they only have read access for.

Barbara’s rapid, high-level code review is the product of tools
whose foundation is a highly reliable tag maintenance system with
the following properties:

• Annotation anchors are updated each time the code is modi-
fied.

Magic Markup: Maintaining Document-External Markup with an LLM ‹Programming›Companion ’24, March 11–15, 2024, Lund, Sweden

• Annotations are stored separately from the base document to
avoid breaking editing and execution for typical text editors
and program interpreters and to keep the annotations of
different tools independent.

1.3 Contributions
The above vision leads us to seek answers to the following ques-
tions:

(1) How capable are current language models as “tag main-
tainers” for a document? Are they reliable, fast, and cheap
enough to build on top of?

(2) What kinds of documents or edits make tags hard to main-
tain? For source code in particular, what kinds of edits exist
at the semantic level, and in what cases does simply moving
tags or noting they have been “orphaned” fail to capture that
meaning?

To answer these questions, we construct an LLM-based re-tagging
system. To evaluate our re-tagging system and promote further
progress on this problem, we synthesize a benchmark suite repre-
senting 90 code updates across 5 programming languages in which
a tagged entity is relocated or altered. We also provide the code for
benchmark generation.

Our contributions include the following:
(1) a formal vocabulary for the problem space that introduces

the notion of annotation intent
(2) adaptable code for generating empirical test and training

data for the re-tagging task
(3) the synthetic Tagged Code Updates benchmark dataset, gen-

erated with the above and cleaned
(4) an LLM-based re-tagging system
(5) an evaluation of our system’s performance on the bench-

marks using OpenAI’s GPT-4 Turbo1 model

2 RELATEDWORK
The problem of anchoring text has a long history. In systems that
are able to observe edit actions, schemes like the "sticky pointers"
of Fischer and Ladner [3] can be used, but offline systems need
methods for dealing with arbitrary document updates. Brush et al.
describe work on robust annotation systems for digital documents
(like Microsoft Word documents) that account for user expectations
using methods like keyword anchoring [2]. They note that anno-
tation orphaning (loss of tag position) is a key problem in these
systems, and that systems typically have strategies for dealing with
orphans.

Prior work has also investigated the use of annotations for source
code. Juhár [6] distinguishes language-level annotations that are
part of code, structured comment annotations, and external anno-
tations requiring the support of a special system, typically an IDE.
These types differ in how annotations are defined, applied, and
in what code elements they are able to bind to, and Juhár devel-
ops an IDE-based annotator that maintains annotation positions
externally.

Keeping annotations attached to the right entities is closely re-
lated to the question of how to track changes in code over time.

1gpt-4-0125-preview

Reiss labeled changes in 53 lines of code across 25 versions of a
Java source file, then evaluated 18 tracking methods with various
parameters to find that a relatively simple, low-computational-cost
combination of string similarity [8] and context comparison yielded
the best results [10]. Reiss’s tracking method has been used in other
systems for attaching annotations to a tracked line, including Hor-
vath et al.’s Catseye [5] and Sodalite [4] systems for adding com-
ments to source code and allowing users to reference source code in
documentation, respectively. Horvath et al.’s idea in these systems
is notable because it is very similar to our own: when Catseye or
Sodalite load, they attempt to reattach old annotations to the file
using Reiss’s tracking method. Horvath et al. note that this method
was able to resolve 86.5% of cases in their testing. However, the
method has no semantic awareness and still suffers from the text
similarity issues we’ve noted previously.

A number of clone detection systems have been designed to
find similar code that has been copied around a code base [9].
These systems are typically specialized to handle specific kinds
of copying, and require domain-specific parsers to handle code
semantics. However, such systems may provide extra guarantees
about equivalence when a copied piece of code is detected.

Our key insight follows historical discussions about notions
of program similarity. Walenstein et al. break program similarity
into two types–representational similarity (concerning text, syntax,
and structure) and semantic or behavior similarity (concerning a
program’s function or execution) [11]. We are interested in the
potential for language models to address the latter form, and our
solution handles that prior string similarity-based methods cannot
by taking advantage of this capability.

3 BASIC DEFINITIONS
While the remainder of this paper presents an early exploration into
the power of LLMs to update annotations in the context of evolving
code bases, this and future work can benefit from a clarification of
the terms and concepts involved in this research. This section both
addresses this need and suggests a longer-term trajectory of work
that takes account of explicit notions of the intent of annotations
while maintaining them.

Due to the wide variety of uses for annotations in documents
and the implications of usage contexts for automatic maintenance
of annotations during document editing, we propose terminology
to clarify some of the otherwise ambiguous notions on this topic.
We start with the simplest concept of “text point” and work through
“annotation" and finally “mapped annotation”.

A text point 𝑇𝑃 is the character index (an integer, zero-indexed)
used to designate a position in some (any) text string. The text
point is independent of any text, except to the extent that the
text be long enough to have position corresponding to the text
point. For example, the text point 4 refers to the position of “C” in
“ABRACADABRA” and to the position of the second “d” in “Aladdin”
but does not refer to anything meaningful in “Fun”. We’ll say that
text point 4 is compatible with “ABRACADABRA” and “Aladdin”
but incompatible with “Fun”.

A text segment 𝑆 of a document 𝐷 is a part of 𝐷 specified by a
starting text point 𝑇𝑃𝑠𝑡𝑎𝑟𝑡 and an ending text point 𝑇𝑃𝑒𝑛𝑑 , where
both text points are compatible with 𝐷 . The substring of 𝐷 that

‹Programming›Companion ’24, March 11–15, 2024, Lund, Sweden Misback et al.

starts at𝑇𝑃𝑆𝑡𝑎𝑟𝑡 and ends right before𝑇𝑃𝑒𝑛𝑑 is considered part of
𝑆 . Thus 𝑆 = [1, 4, “lad”] is a text segment of “Aladdin” but not of
“ABRACADABRA” and not even of “The boy Aladdin”.

An annotation 𝐴 of a document 𝐷 consists of a text segment 𝑆
together with two additional pieces of information:
(i) contents. We can assume this is text or hypermedia represented
textually (e.g., with HTML).
(ii) intent. Though often unknown or unspecified, this is a kind
of metadata associated with the contents and the text segment
that can be important in the accurate maintenance of the anno-
tation as the underlying document 𝐷 goes through edits or other
transformations.

The text segment 𝑆 of annotation 𝐴 is known as its anchor [2].
The substring of 𝐷 in 𝑆 is known as the anchor text of 𝐴. If the
substring is of length 0, then the anchor is called a point anchor.
Otherwise, it is called a range anchor.

A document view 𝑉 consists of a document 𝐷 and a set 𝑍 of
annotations.

Given a document view 𝑉 = (𝐷,𝑍) and a transformed (e.g.,
edited) version of the document 𝐷′, the view-mapping problem is
to update 𝑍 to obtain that 𝑍 ′ which best respects the intents of
annotations in 𝑍 . We call 𝑍 ′ the mapped annotations from 𝑉 , and
𝑉 ′ is the mapped view of 𝑉 .

As an example, let 𝐷 = “boy alad.” Let 𝑍 = {𝐴1} where 𝐴1=([4
, 8, “alad”], content:“The boy’s name”, intent:‘TRACK NAMES’).
Further let 𝐷′ = “The young boy Aladdin wandered out.” We may
expect that𝑍 ′ = {𝐴′

1} where𝐴
′
1 = ([14, 21, “Aladdin”], content:“The

boy’s name”, intent:‘TRACK NAMES’).
The incorporation of intent as a component of an annotation is

not customary in computer technology at this time. For example,
highlighting tools in editors do not require indication of intent or
directly offer any specific affordance for expressing the intent of an
annotation. Microsoft Word and Powerpoint do offer alternatives
to highlighting: strikeout, underline, change of font, font size, or
color, etc. But these do not enforce any clear intent communication
either.

However, intent is actually a fundamental aspect of annota-
tions as defined outside of the computing-tool context. Here is
the Merriam-Webster definition:

“annotation: (noun) a note added by way of
comment or explanation.”

To unpack this definition, we can identify three essential aspects
of an annotation. First, the “note” aspect is its content, some text
or similar representation of the annotator’s idea. The word “added”
indicates that the note is a new component of something existing
– that would be the base document or the base document already
joined with other annotations. Finally, there is something about
the purpose of this added note: “by way of comment or explana-
tion”. The phrase “by way of” can be interpreted here as “based on”
or “associated with”, and the objects that might be associated are
“comment” and “explanation”. These can be considered purposes,
motivations, or reasons for the annotation. They are communica-
tive modes or roles for the annotation. They are examples of what
we are naming, in this paper, “intents”.

Intents of annotations are very important inputs to any process
of maintaining annotations when the underlying document for

it changes. Without any explicit information about intents, any
algorithm will have to guess or embody a programmer’s guess
about intent of annotations in a given application. A typical yellow-
marker highlight in a text is an annotation with a range anchor
and anchor text, but no content. A good guess at the intent in such
an annotation is to express “I think this anchor text is relatively
important in this document.” This may be enough to guide a smart
annotation mapper to a good result, because it implies that there is
some semantic integrity of the anchor text that should be preserved
in the mapped annotation, and the location (of the anchor text
segment) should be updated in such as way as to maintain the same
relationship between the segment and the surrounding context
before and after the transformations.

A very different intent of an annotation is the marking of line
numbers, which although not present in the original document,
can support an editorial process or programmer interaction with a
debugger. When the program is edited, we do not expect that the
line numbers will follow the syntactic or lexical contexts in which
they originally occurred, but will reflect the new line structure
post-editing. Another example of an annotation that should not
be updated according to surrounding context is a point-anchored
annotation with content “5000 words to here.” Without either ex-
plicit intent or correct inference or guessing of intent, an automatic
annotation mapper would be at a loss to do the best thing.

4 TAGGED CODE UPDATES BENCHMARK
SUITE

To define the targets for a re-tagging system empirically, bench-
marks are needed. While real-world codebases like the Java files
tracked by Reiss et al. [10] should be the gold standard for such
benchmarks, language models present an opportunity to rapidly
construct synthetic benchmarks with significant detail about the
intent behind refactorings. We create the Tagged Code Updates
benchmark suite as an example.

Our benchmark suite and generation system are available on
Observable and Github.

4.1 Code Generation System
Our system generates examples of code that has undergone a single
edit or refactoring (Figure 1). Examples are generated through a
series of queries to language models of varying capability. We note
that steps involving creative generation can be performed by any
moderately creative and attentive model, but we required one of
the largest available models (GPT-4 Turbo) to reliably perform steps
involving correctness.

For each example, we begin with this prompt:

Briefly describe an intermediate-level $LAN-
GUAGEprogramming problem including at least
one $SNIPPET_TYPE that can be solved in a
single file. Use a creative, real-world framing.
Describe steps to solve this problem. Do not
provide code yet.

This step creates a high-level frame for the code that will be pro-
duced. A full example output can be seen in the appendix (section
A.1.1).

https://observablehq.com/@elmisback/tagged-code-updates-benchmark
https://github.com/elmisback/magic-markup/tree/main/benchmark

Magic Markup: Maintaining Document-External Markup with an LLM ‹Programming›Companion ’24, March 11–15, 2024, Lund, Sweden

Figure 1: An example synthetic benchmark. On the left, a language model has produced an original program for displaying the
price of drinks, and another model has selected and delimited a segment (the “menuItems” constant) with black Unicode star
characters (★). On the right, a language model has synthesized updates to the program while keeping the segment in place. Our
re-tagging system predicts the position of the segment in an unmarked version of the file on the right.

Next, we generate initial code to solve the described problem.
We found that this typically results in small, easily-understood
programs that might be used as applications examples in beginner
and end-user programming contexts, like a simple calculator for
a pizza restaurant or a grocery store inventory manager; perhaps
the most interesting program we saw was a genetic algorithm for
optimizing the delivery routes of an e-commerce driver (benchmark
64).

After this, a short delimiter string that the model will not confuse
with the text already in the file is chosen to delineate the sections
of code that are being annotated. We hardcoded this value as a
Unicode star character (U+2605,★) for our benchmarks, since it did
not occur in any of the generated code. An extended system might
have to dynamically handle a variety of possible character sets.

At this point, the model is asked to describe a snippet in the
program matching the SNIPPET_TYPE. This again creates a high-
level frame for the next step, where the model is asked to rewrite
the code with the described snippet delimited using the chosen
delimiter string. Adding the delimiters was the first time we found
it helpful to use the largest available model, in order to make sure
the language of the snippet description and the actually delimited
segment matched our expectation as programmers as closely as
possible. (In retrospect, we find the snippet descriptions in our
benchmarks still vague. Generating the snippet description itself
with a largermodel andmore detailed instructions about connecting
the snippet with the code would probably create a closer match.)
An example of a generated snippet can be seen in the appendix
(section A.1.2).

Next, we ask the model to describe “an interesting change or
refactoring of this code that a real-world programmer might apply.”
We provide a flag that optionally asks the model to “[d]escribe a

state where this code change has only been partially applied” to try
to obtain more realistic examples of incomplete edits or refactorings.
An example of an update description can be seen in the appendix
(section A.1.3).

Finally, we generate the updated code, specifying that the delim-
iter position must be preserved, with their contents “functionally
identical in the new version of the code.” Figure 1 shows an example
output benchmark; see the appendix for the full prompt (section
A.1.4).

4.2 Benchmark Suite Description
4.2.1 Parameters. We initially generated 101 program/program
update pairs for our benchmarks. The suite targets 5 languages:
Python, Javascript, JSX, Racket, and C. We wondered if different
languages and syntaxes might present different levels of difficulty
for the model’s re-tagging attempts.

We asked themodel to choose from 6 kinds of snippets: constants,
subexpressions, variable assignments, loop bodies or code blocks,
loop conditions, and function calls. These represent a slightly-
diverse sample of common simple code structures, but leave out
many other possibilities, like selecting keywords, parts of com-
ments, or multiline sections of code.

We also generated an additional 10 examples for a “training set”
used for prompt tuning, described in section 5.1.1.

4.2.2 Benchmarks filtered out of the test set. After generation, we
manually reviewed all benchmarks and excluded 11 from the final
set. 8 of these were excluded for generation mistakes like missing

‹Programming›Companion ’24, March 11–15, 2024, Lund, Sweden Misback et al.

delimiters in the initial or output code.2 We also found 2 other kinds
of outputs:

(1) The segment is completely missing in the updated code. For
example, a loop condition is gone after the loop has been
refactored into a reduce() call. (2 benchmarks)

(2) Multiple independent segments could be delimited due to
ambiguity after code duplication (1 benchmark).

2 and 3 represent more complicated cases that we decided were
out of scope for this benchmark suite. Other benchmarks designed
to target those particular issues are needed to explore them properly.

This left us with a test set of 90 examples, with 28 written in
Python, 17 in Javascript, 17 in Racket, 16 in JSX, and 12 in C. The
types for the targeted snippets were as follows: constants (17),
subexpressions (19), variable assignments (12), loop bodies or code
blocks (12), loop conditions (13), and function calls (17).

4.2.3 Benchmark suite generation costs. Each benchmark required
around 1800 input tokens and 700 output tokens from a “large”
model like GPT-4 and 1300 input tokens and 1000 output tokens
from a “small” model like GPT-3.5. This cost us roughly $.04 per
benchmark through OpenAI’s platform. Generation time for each
benchmark was on the order of tens of seconds due to the relatively
large number of output tokens required from a large model.

5 PROTOTYPE RE-TAGGING SYSTEM
We created a re-tagging system3 tomeasure the capability of current
language models on the Tagged Code Updates benchmark suite.
Our system submits a single prompt to obtain the text and line
numbers in the file of the updated segment, then matches the text
points for the beginning and ending of the segment in the updated
file.

5.1 Re-tagging Prompt
An example of an application of our re-tagging prompt template
can be seen in the appendix (section A.2.1). To allow the model
to reference line numbers reliably, we prepend the line numbers
for the original and updated files. In case the tag’s contents are
repeated in the section indicated by the line numbers, for example
in a single line like 𝑎 = ★𝑎 ★ +𝑎, we also request the index of the
correct match’s occurrence in the section. We use the OpenAI JSON
response format to constrain the model to only generate valid JSON
in its response.

5.1.1 Prompt hand-tuning. Before settling on this prompt for our
evaluation, we used the 10 examples in our training set to check vari-
ations, including variations that were more successful for less pow-
erful models (gpt-3.5-turbo-0125, Gemini Pro, and Mistral8x7b).4
These variations included:

• Prompts that simply generate the full re-tagged file. These
prompts were initially promising, especially when run on a
large model, but we found that the output was not faithful

2We did later test those with proper initial delimiters separately from our evaluation
below to see if our system had any problem with re-tagging these examples, but it did
not.
3Available on Github and Observable.
4Although it was trained on code in particular, CodeLlama-70b-Instruct-hf did not
follow instructions well enough to be considered.

enough to the text of the updated file to trust. For example,
the output might be missing comments, or have whitespace
differences, or a single typo somewhere in a long file. Fur-
thermore, the time required for a large model to copy an
entire file is significant.

• Prompts that generate plain English responses. This some-
times helped smaller models in our experience. However,
parsing the generated output introduces an additional point
of failure.

• Prompts that first ask the model to focus on a smaller section
of the file. This significantly helped smaller models in our
experience. In particular, asking the model to reprint the
general section of the file it was focusing on seemed to help
it locate finer-grained segments of that section.

• Prompts that ask the model to reevaluate previous answers.
This did not seem to help smaller models when the previous
answer was “known” to be the model’s own output. A proper
setup might ask the same prompt several times and try to
average or take the best idea across the results.

• Prompts that ask the model for a confidence rating or ask
the model to “put yourself in another programmer’s shoes”
and think about whether someone else might answer dif-
ferently. This did not seem to have any impact on results,
but we noticed that smaller models seemed to express the
same levels of confidence (around 90%) in correct and in-
correct or ambiguously correct decisions. gpt-4-turbo-0125
expressed nearly complete confidence in both its correct and
ambiguously correct answers, but usually correctly identified
alternatives to ambiguously correct answers. (An example
of an ambiguously correct answer is re-tagging 𝑎 = ★𝑏★ as
𝑎 = ★𝑏 + 𝑐★, since 𝑎 =★𝑏 ★ +𝑐 is arguably also valid.)

Even on our very small tuning set, the smaller models occasion-
ally made serious mistakes, like moving an annotation on a function
call to the function definition. They also struggled more with keep-
ing the contents of annotations consistent at the character level:
an annotation like “for ★line in lines:★” was likely to become “for
★line in lines★:”, dropping the colon. Since breaking the problem
down into smaller steps helped but did not fully eliminate these
issues, there may be a fundamental difficulty for these models with
the complexity and multi-step nature of the task.

The model used for our evaluation (gpt-4-turbo-0125) reliably
obtained a perfect score on the tuning set with the selected prompt.

5.2 Text Point Matching
After obtaining the text and line numbers of the updated segment,
our system attempts a whitespace-normalized exact match with
the text in that subsection of the updated file. This naive approach
gave us a perfect score on the tuning set with outputs from the
model used for our evaluation. For the outputs of smaller models,
we attempted to configure fuzzy matching, but did not pursue this
in the system evaluated. Asking for a regular expression matching
the section or the start or end of the section also did not reliably
result in a correct match.

We discuss possible failures of this naive setup in section 6.1.1.

https://github.com/elmisback/magic-markup
https://observablehq.com/@elmisback/magic-markup-retag

Magic Markup: Maintaining Document-External Markup with an LLM ‹Programming›Companion ’24, March 11–15, 2024, Lund, Sweden

6 EVALUATION
We ran the re-tagging system on the benchmarks using gpt-4-turbo-
0125 as the language model and report the results here.

6.1 Results
6.1.1 Accuracy and points of failure. 79 of the 90 tags in our test
set (~88%) were placed with no difference at all from the “correct”
output.

Two of the differenceswere incorrect matches resulting from tags
beginning with whitespace, which our system was not designed to
preserve. Ignoring this issue gives a “true” accuracy of 90%.

Two more differences were incorrect matches due to the model
stating the wrong occurence index. In our test, the model never
stated any occurrence index other than 1. This seems to indicate a
lack of understanding of this part of the prompt.

No match was found for seven of the benchmarks. In five of
the match failures, the text was correctly identified, but the model
misidentified the starting or ending line of the segment. All of these
differenceswere off by one in the direction of starting or terminating
the section of the segment early. Five of these (5, 77, 80, 82; not
20) involved what appears to be an issue with mismatched nested
parentheses (see Figure 1). Expanding the lines being searched once
after a failure to match would solve this issue and give an accuracy
of 9̃6% on this benchmark suite. However, a new test set would be
needed after making such a change. Expansion also allows incorrect
matches.

4: ★const PropertyListing = ({ title , address , price ,

bedrooms , bathrooms , image }) => {

5: // Input validation can be implemented here if needed

for additional logic

6: return (

...

14: </div >

15:);

16: }★

Listing 1: Code that led to an ending line number error. gpt-
4-turbo-0125 incorrectly chose line 15 for the final line of the
segment after correctly stating the full text of the segment,
including the brace on line 16.

In two of the match failures, the model failed to correctly copy
the text of the updated segment. One of these instances (the re-
sponse for benchmark 30) omitted a comment from the updated
text, and another (for 63) copied the snippet from the original file
rather than the text from the updated file. 63 was the only observed
misunderstanding of the primary task.

6.1.2 Latency. Output from our prompt was about 30 tokens plus
the number of tokens in the segment, which may be arbitrarily long.
The average generation time for our system over the benchmarks
using the gpt-4-turbo-0125 endpoint was 4.4 seconds.

7 DISCUSSION
Here we discuss the implications of these results and the challenges
faced by an LLM-maintained, document-external annotation sys-
tem.

7.1 Capability of Current Language Models
7.1.1 Accuracy, latency, and cost tradeoffs. Putting aside the off-by-
one line number issue, gpt-4-turbo-0125’s responses other than the
response to benchmark 63 matched human expectations. For the
kinds of re-taggings in our benchmark suite, there is no question
that an existing language model is capable of the task in a vacuum,
or that the accuracy could be pushed arbitrarily high by resampling.
However, the model’s high cost and average response time are prob-
lematic. If cost is not a concern, since tag positions are independent,
re-tagging can occur in parallel for all tags on a document, but full
parallelism still requires an LLM instance for each tag. As the speed
and availability of LLMs increases, this problem may diminish, but
base performance will still need to increase considerably, or more
creative prompts that process tags together will be needed, to scale
to documents with hundreds of tags.

How else might this issue be overcome? One method we at-
temptedwas to support smaller, fastermodels.Mixtral-8x7B-Instruct-
v0.1, a fast open source mixture-of-experts (MoE) model, usually
responded in around one fifth the time of gpt-4-turbo-0125, with
hosting costs around one fortieth despite performance on par with
gpt-3.5-turbo-01.25. Initial tests with Mixtral were promising, but
we ultimately found significant enough issues with reliability dur-
ing prompt tuning (discussed in section 5.1.1) that we did not pro-
ceed to evaluation. This process was repeated with Gemini Pro
and gpt-3.5-turbo-0125. This may indicate a fundamental lack of
ability in smaller models, but more testing is needed; it may still
be possible that a system with enough checks could at least solve
the accuracy issue for small models, though it might require many
more requests to the language model.

A more promising direction we did not explore would be to fine-
tune a small model on examples collected from our code generation
system (or a derived system representing a greater variety of cases).
Depending on the level of success in this, fast and accurate re-
tagging across many platforms could be achieved relatively soon.
Another approach might use fine-tuned models for likely easier
triage and validation steps to avoid calling an expensive model in
most cases.

7.1.2 Threats to validity. As a synthesized benchmark suite, our
evaluation faces obvious threats to external validity. At present, our
suite represents a very low bar which any re-tagging system should
clear without issue, and does not test the reliability of our system
on an actual code base. At best, it establishes that gpt-4-turbo-0125
is capable of following the movement of entities in refactorings
performed by the model itself. However, the failures of the smaller
models reveal that this result has some value.

7.2 Common Difficulties
Our system and evaluation reveal at least 3 problems a semantic
re-tagging system must address.

7.2.1 “Whitespace” and tag matching. When building our system,
we were surprised to find that the text output by the language
model often differed from the input text due to whitespace. With
the right prompt or model tuning this issue may go away, but
without a solid solution, matching model output to the code in the
buffer is a considerable challenge. Even though the system’s focus

‹Programming›Companion ’24, March 11–15, 2024, Lund, Sweden Misback et al.

is on semantics, possibly-brittle syntactic bookkeeping remains
necessary.

7.2.2 Annotation orphaning and duplication, and intent. As de-
scribed in Section 4.2.2, our system does not attempt to handle
annotations whose anchor text is simply removed from the file, and
we excluded several of these cases from our benchmark. Duplicated
anchor text was also excluded. These represent very common real-
world cases that must be handled in practice: code is often entirely
deleted or copied from one place to another. A robust system must
detect these cases and may be able to leverage an intelligent agent
to decide whether the anchor text vanishing or multiplying means
that the annotation itself should vanish or multiply. This is a more
complicated problem than it may seem. For example, in an excluded
benchmark, a tag on a loop condition vanished because the loop
became a reduce() call. Should the tag have been re-applied to the
reduce() call? Knowing that the tag referred to the 𝑙𝑒𝑛𝑔𝑡ℎ of the
array being looped over, maybe one would say it should not, since
the reduce call has no reference to the array’s length. However, if
we suppose the annotation represented a comment on the loop body
noting that “the loop will execute 𝑙𝑒𝑛𝑔𝑡ℎ times, so the programmer
must be careful not to pass in very long arrays,” we would probably
conclude that the warning is still valid and should find a new home,
perhaps on the array itself. In other words, knowing the intent of
the annotation allows it to be removed or reapplied appropriately.

For these reasons, our definitions in section 3 include a notion of
intent. However, the complexity introduced by intent led us to avoid
it while testing this initial system. We hope to see an expanded set
of benchmarks in the future that include full information about
the content and intent of annotations in order to allow addressing
cases like these.

7.2.3 Truly ambiguous re-taggings. Even with intent, a system will
still fall short in cases where even a human would not know what
the programmer wants. A robust system should detect these cases
and offer suggestions for reasonable options. In limited tests on
simple examples, we found gpt-4-turbo-0125 limited its responses to
correct alternatives (sometimes missing alternatives), while smaller
models occasionally suggested far-fetched (arguably incorrect) re-
taggings.

8 CONCLUSION
In conclusion, this paper presents a novel approach to leveraging
language models for the automated re-tagging and maintenance
of document-external markup, highlighting the potential of LLMs
to significantly enhance code annotation processes. Together, our
formal description of annotations, adaptable code for benchmark
generation, the synthetic Tagged Code Updates benchmark dataset,
and our example implementation provide starting points for re-
search on this technique. Our evaluation measures the viability of
current language models for accurately re-tagging code in response
to modifications. The gpt-4-turbo-0125 model indeed handles cases
that traditional methods cannot with promising accuracy rates, but
challenges such as properly matching the model’s output to the file
and handling annotation ambiguities remain.

Our research underscores the importance of intent and semantics
in annotations and suggests a future direction for automated code

maintenance tools. Ultimately, our findings lay the groundwork for
further exploration into the integration of programming languages,
markup systems, and artificial intelligence.

ACKNOWLEDGMENTS
We would like to thank Kevin Shebek and Joshua Horowitz for
reading early drafts of this paper and offering critical feedback. We
also thank our reviewers for their guidance and valuable sugges-
tions while preparing the final version of this paper. This material is
based upon work supported by the U.S. Department of Energy, Of-
fice of Science, Office of Advanced Scientific Computing Research,
ComPort: Rigorous Testing Methods to Safeguard Software Porting,
under Award Number DE-SC0022081.

REFERENCES
[1] Tim Berners-Lee and R. Cailliau. 1990. WorldWideWeb: Proposal for a HyperText

Project. https://www.w3.org/Proposal.html
[2] AJ Bernheim Brush, David Bargeron, Anoop Gupta, and Jonathan J Cadiz. 2001.

Robust annotation positioning in digital documents. In Proceedings of the SIGCHI
conference on Human factors in computing systems. 285–292.

[3] Michael J Fischer and Richard E Ladner. 1979. Data structures for efficient im-
plementation of sticky pointers in text editors. Department of Computer Science,
University of Washington.

[4] Amber Horvath, Andrew Macvean, and Brad A Myers. 2023. Support for Long-
Form Documentation Authoring and Maintenance. In 2023 IEEE Symposium on
Visual Languages and Human-Centric Computing (VL/HCC). IEEE, 109–114.

[5] Amber Horvath, Brad Myers, Andrew Macvean, and Imtiaz Rahman. 2022. Using
Annotations for Sensemaking About Code. In Proceedings of the 35th Annual
ACM Symposium on User Interface Software and Technology. 1–16.

[6] Ján Juhár. 2019. Supporting source code annotations with metadata-aware de-
velopment environment. In 2019 Federated Conference on Computer Science and
Information Systems (FedCSIS). IEEE, 411–420.

[7] Donald Knuth. 1984. Literate Programming. Comput. J. 27, 2 (1984), 97––111.
[8] Vladimir I Levenshtein et al. 1966. Binary codes capable of correcting deletions,

insertions, and reversals. In Soviet physics doklady, Vol. 10. Soviet Union, 707–710.
[9] Dhavleesh Rattan, Rajesh Bhatia, and Maninder Singh. 2013. Software clone

detection: A systematic review. Information and Software Technology 55, 7 (2013),
1165–1199.

[10] Steven P Reiss. 2008. Tracking source locations. In Proceedings of the 30th inter-
national conference on Software engineering. 11–20.

[11] Andrew Walenstein, Mohammad El-Ramly, James R Cordy, William S Evans,
Kiarash Mahdavi, Markus Pizka, Ganesan Ramalingam, and Jürgen Wolff von Gu-
denberg. 2007. Similarity in programs. In Dagstuhl Seminar Proceedings. Schloss
Dagstuhl-Leibniz-Zentrum für Informatik.

A APPENDIX
A.1 Benchmark Generation
A.1.1 Example of a high-level problem description generated by
gpt-3.5-turbo-0125.

Problem: A local coffee shop wants to create a dynamic menu on
their website that displays the prices of different coffee beverages
based on the size (small, medium, large) selected by the user.

Constant:
- menuItems: An array of objects containing information about

each coffee beverage (name, small price, medium price, large price).
Steps to Solve:
(1) Create an array of objects called menuItems, where each

object represents a different coffee beverage and stores its
name, small price, medium price, and large price.

(2) Create a component that displays themenuItems in a visually
appealing way, with buttons for selecting small, medium, or
large sizes for each coffee beverage.

https://www.w3.org/Proposal.html

Magic Markup: Maintaining Document-External Markup with an LLM ‹Programming›Companion ’24, March 11–15, 2024, Lund, Sweden

(3) Add logic to the component that updates the displayed price
based on the size selected by the user.

(4) Test your component by rendering it on a webpage and
verifying that the prices update correctly when different
sizes are selected.

A.1.2 Example of a high-level snippet description for SNIPPET_TYPE
“constant” generated by gpt-3.5-turbo-0125.

One particular constant in this program is ‘menuItems’. It is an
array of objects that represent different items on a coffee menu,
each object containing the name of the item, along with the prices
for small, medium, and large sizes of that item. This constant is
used to display the menu items and their prices on the screen.

A.1.3 Example of a high-level update description generated by gpt-
3.5-turbo-0125.

One potential change a real-world programmer might consider is
refactoring the way the menuItems data is structured. Instead of us-
ing separate properties for smallPrice, mediumPrice, and largePrice,
they might consider grouping the prices together under a single
prices object for each item. This could make the data structure more
flexible and easier to work with, especially if there are plans to add
more size options in the future.

In this partially applied state, the programmermay have created a
new data structure for menuItems where each item now has a prices
object that contains the prices for different sizes (small, medium,
large). They may have updated the CoffeeMenu component to work
with this new data structure for some items, but not for all items yet.
As a result, some items may still be using the old separate properties
for prices while others are utilizing the new prices object.

This halfway refactored codebase may demonstrate a transi-
tional phase where the programmer is in the process of updating
the data structure and component logic to be more scalable and
maintainable.

A.1.4 Prompt to get the updated code with the snippet still properly
delimited.

Consider the following problem:
<problemDescription >

${problemDescription}

</problemDescription >

Now consider this code that tries to solve the problem:
<program >

${codeWithSnippetDelimited}

</program >

Note that a snippet from the code has been marked with a “${de-
limiter}” on both sides. This snippet is described as follows:
<snippetDescription >

(${snippetType })

${snippetDescription}

</snippetDescription >

Now consider the following description of an update to the
program:
<updateDescription >

${updateDescription}

<updateDescription >

Apply this update to the code as described. Your response should
be purely code without any external discussion, and should fully
copy any relevant sections of the original program. In order to
obtain credit, you MUST maintain the “${delimiter}” marks on the
snippet or its updated version. The contents of the snippet should
be functionally identical in the new version of the code.

Again, the updated version of the code MUST have a SINGLE
pair of “${delimiter}” marks referring to the same snippet in its new
position or form.

A.2 Annotation update system
A.2.1 Prompt with an example program and update.
Consider the following file:
<INPUT >

1:

2:# include <stdio.h>

3:

4:int main() {

5: int numItems;

6: float totalAmount = 0;

7: float discountedAmount = 0;

8:

9: printf("Enter the number of items in the cart: ");

10: scanf("%d", &numItems);

11:

12: for (int i = 1; i <= ★numItems★; i++) {

13: float price;

14: printf("Enter the price of item %d: ", i);

15: scanf("%f", &price);

16:

17: totalAmount += price;

18: }

19:

20: if (numItems >= 5) {

21: discountedAmount = 0.1 * totalAmount;

22: totalAmount -= discountedAmount;

23: }

24:

25: printf("\nTotal amount: $%.2f\n", totalAmount);

26: printf("Discounted amount: $%.2f\n",

discountedAmount);

27:

28: return 0;

29:}

</INPUT >

A specific segment of code has been marked with “★”. The seg-
ment refers to ONLY THE TEXT BETWEEN THE “★” marks:
<SEGMENT >

numItems

</SEGMENT >

Next, consider the following updated file:
<UPDATED >

1:# include <stdio.h>

2:

3:int main() {

4: int numItems;

5: float totalAmount = 0;

6: float discountedAmount = 0;

7:

8: printf("Enter the number of items in the cart: ");

9: scanf("%d", &numItems);

10:

‹Programming›Companion ’24, March 11–15, 2024, Lund, Sweden Misback et al.

11: float prices[numItems]; // Introduce an array to

store the prices of the items

12:

13: for (int i = 1; i <= numItems; i++) {

14: float price;

15: printf("Enter the price of item %d: ", i);

16: scanf("%f", &price);

17:

18: prices[i - 1] = price; // Store the price in

the array

19:

20: totalAmount += price;

21: }

22:

23: if (numItems >= 5) {

24: discountedAmount = 0.1 * totalAmount;

25: totalAmount -= discountedAmount;

26: }

27:

28: printf("\nTotal amount: $%.2f\n", totalAmount);

29: printf("Discounted amount: $%.2f\n",

discountedAmount);

30:

31: return 0;

32:}

</UPDATED >

You are responsible for placing an identical annotation on this
updated file. It is extremely important that you place the annotation
in the correct place. Important metadata is attached to this segment.

Describe possible sections the specific segment could be said to
be located in. It is possible the segment has not changed, or that
it has been refactored. Pick the most correct choice. Remember to
be detailed about the start and stop of the segment. If the segment
has been updated, it may need to expand or shrink. BE CAREFUL
TO INCLUDE NOTHING EXTRA. Then, provide the following
numbered answers as a JSON object:

1) Print ONLY the text of the updated specific segment. You must
print all of the text here.

2) State ONLY the line number in UPDATED that (1) starts on.
3) State ONLY the line number in UPDATED that (1) ends on.
4) (1) may occur multiple times in the section given by [(2),(3)].

Which number occurrence, as ONLY a 1-indexed number, is (1)?
The object must look like: {1: <code>, 2: <number>, 3: <number>,

4: <number>}
The answer to 1 should be a code string only, without markdown

formatting or extra notes.

	Abstract
	1 Introduction
	1.1 Problem Statement
	1.2 User Story
	1.3 Contributions

	2 Related work
	3 Basic Definitions
	4 Tagged Code Updates Benchmark Suite
	4.1 Code Generation System
	4.2 Benchmark Suite Description

	5 Prototype re-tagging system
	5.1 Re-tagging Prompt
	5.2 Text Point Matching

	6 Evaluation
	6.1 Results

	7 Discussion
	7.1 Capability of Current Language Models
	7.2 Common Difficulties

	8 Conclusion
	Acknowledgments
	References
	A Appendix
	A.1 Benchmark Generation
	A.2 Annotation update system

