
Odyssey: An Interactive Workbench for Expert-Driven
Floating-Point Expression Rewriting

Edward Misback Caleb C. Chan Brett Saiki
University of Washington University of Washington University of Washington

Seattle, Washington, United States Seattle, Washington, United States Seattle, Washington, United States
misback@cs.washington.edu calebcha@cs.washington.edu bsaiki@cs.washington.edu

Eunice Jun Zachary Tatlock Pavel Panchekha
University of Washington University of Washington University of Utah

Seattle, Washington, United States Seattle, Washington, United States Salt Lake City, Utah, United States
University of California, Los Angeles ztatlock@cs.washington.edu pavpan@cs.utah.edu
Los Angeles, California, United States

emjun@cs.washington.edu

ABSTRACT
In recent years, researchers have proposed a number of automated
tools to identify and improve foating-point rounding error in math-
ematical expressions. However, users struggle to efectively apply
these tools. In this paper, we work with novices, experts, and tool de-
velopers to investigate user needs during the expression rewriting
process. We fnd that users follow an iterative design process. They
want to compare expressions on multiple input ranges, integrate
and guide various rewriting tools, and understand where errors
come from. We organize this investigation’s results into a three-
stage workfow and implement that workfow in a new, extensible
workbench dubbed Odyssey. Odyssey enables users to: (1) diagnose
problems in an expression, (2) generate solutions automatically or
by hand, and (3) tune their results. Odyssey tracks a working set of
expressions and turns a state-of-the-art automated tool “inside out,”
giving the user access to internal heuristics, algorithms, and func-
tionality. In a user study, Odyssey enabled fve expert numerical
analysts to solve challenging rewriting problems where state-of-
the-art automated tools fail. In particular, the experts unanimously
praised Odyssey’s novel support for interactive range modifcation
and local error visualization.

CCS CONCEPTS
• Human-centered computing → Interactive systems and
tools; Empirical studies in HCI; • Software and its engineering
→ Software maintenance tools.

KEYWORDS
Floating Point; Expert Programming; Debugging; Developer Tools;
Term Rewriting, Dynamic Analysis

This work is licensed under a Creative Commons Attribution International
4.0 License.

UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0132-0/23/10.
https://doi.org/10.1145/3586183.3606819

ACM Reference Format:
Edward Misback, Caleb C. Chan, Brett Saiki, Eunice Jun, Zachary Tatlock,
and Pavel Panchekha. 2023. Odyssey: An Interactive Workbench for Expert-
Driven Floating-Point Expression Rewriting. In The 36th Annual ACM Sym-
posium on User Interface Software and Technology (UIST ’23), October 29–
November 01, 2023, San Francisco, CA, USA. ACM, New York, NY, USA,
15 pages. https://doi.org/10.1145/3586183.3606819

1 INTRODUCTION
Floating-point arithmetic is widely used in scientifc, engineering,
and graphical applications to approximate arithmetic on real num-
bers; typically, it is the only practical option available.1 However,
foating-point arithmetic must be used with care, as rounding errors
can cause foating-point arithmetic and real-number arithmetic to
give dramatically diferent results. For example, naïve implemen-
tations of well-known mathematical equations like the quadratic
formula can exhibit unacceptably-high rounding error Figure(1b).
Rounding error can also ruin results for even extremely simple
expressions. Figure1a shows that, for large foating-point values
of x, the expression x + 1 - x can evaluate to 0 instead of the
mathematically correct 1! Floating-point rounding error has caused
unreproducible scientifc research, distorted stock market indices,
and wartime casualties [3, 4, 18, 36, 40, 46, 47].

As a specifc example, a major bug in the implementation of
asinh/acosh in the Rust standard math library went unnoticed for
seven years. An automated test suite caught the bug in 2022 [1].

In order to diagnose and repair this kind of error, numerical
analysis experts have developed techniques and tools for analyz-
ing and rewriting foating-point expressions over the last decade.
These tools support and facilitate automated test generation [10],
error analysis [8, 16, 20, 27, 43], and repair [14, 39]. For example,
the open-source, state-of-the-art Herbie tool [39] takes as input a
foating-point expression and uses algebraic and analytic identities
to rewrite the expression via a complex search process. Despite
wide adoption of tools like Herbie in industrial and national labs,
users still fnd results are too complicated and that tools overlook
seemingly obvious rewritings.

1While alternatives exist, e.g., arbitrary-precision arithmetic, exact rational arithmetic,
and constructive real arithmetic, they are orders of magnitude slower than hardware
foating-point, and are thus inappropriate for many applications.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3586183.3606819
https://doi.org/10.1145/3586183.3606819
mailto:emjun@cs.washington.edu

UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA Edward Misback, Caleb C. Chan, Bret Saiki, Eunice Jun, Zachary Tatlock, and Pavel Panchekha

FP arithmetic seems ok
>>> x = 1e15
>>> x + 1 - x
1.0

... until it doesn 't!
>>> x = 1e16
>>> x + 1 - x
0.0

(a) Example of “catastrophic cancellation” in Python.

(b) Average “bits” (log2 (ulps)) of foating-point error with respect
to � when evaluating the quadratic equation over randomly-
sampled inputs. For many applications the error is unacceptable,
but few programmers are equipped to address such numerical
issues.

Figure 1: Floating-point error is pernicious; even familiar,
simple expressions can yield meaningless results.

Fully understanding and fxing the bug in Rust required rewriting
the naive defnition ���(�+���� (�2+1)) as ���1� (�+�/(ℎ���� (1, �)+
�)). To arrive at the solution, numerical analysts needed to repur-
pose internal operations of existing tools and apply their own expert
knowledge. This example illustrates how experts must work
with a constellation of complicated analysis tools, none of
which answer their questions about an expression directly.
Our goal is to enable numerical analysis experts and developers
of mathematical libraries to fnd and fx similar bugs and prevent
their occurence in the future.

Towards this goal, we observed novices and experts in an in-
lab design study and found that users struggle with specifying
their objectives and interpreting Herbie’s results, facing issues of
tool/user objective mismatch, lack of trust in the automated tool,
and a need for independent exploration. We also identifed a three-
stage foating-point rewriting workfow: (1) diagnosing problems, in
which users identify the problematic operations within expressions;
(2) generating solutions, in which users gather potential expression
rewritings from automated tools, references, or their own creativ-
ity; and (3) tuning, where users test, tweak, and compare diferent
rewritings to optimize the resulting expression for their own accu-
racy, performance, and maintainability needs. This workfow is not
well-addressed by existing tools. For example, end-to-end tools like

Herbie can take minutes to return a batch of analysis results, and
there is no tool support for comparing and improving rewritings
drawn from multiple sources.

To support this workfow, we designed and implemented Odyssey,
an interactive workbench that allows users to identify problem ar-
eas in foating-point expressions using error visualizations, collect
and manage expression rewrites using an interactive table, and
combine rewrites to minimize rounding error. Odyssey leverages
Herbie as an analysis and rewriting engine but retains context about
the user’s objectives, allowing it to return common analyses in less
than a second.

To evaluate the efectiveness of Odyssey, we conducted a study
with fve experts in numerical computing and foating-point arith-
metic. On average, the experts successfully completed fve out of
seven challenging tasks drawn from real-world numerical problems
in roughly 40 minutes after a 12-minute tutorial. The interactive
nature of Odyssey enabled experts to concentrate on high-level
problem-solving and facilitated the swift evaluation and compari-
son of expression rewritings.

Odyssey contributes to a growing body of work on expert tools.
Unlike end-users, experts have highly specialized workfows and
signifcant low-level implementation knowledge they need to ex-
press and incorporate in tools. Examples of expert tools include
Roly-poly, a tool for guided optimization of Halide image process-
ing code [26]; PerformanceHat, a tool for analyzing application
runtime performance [12]; and Tsugite, a tool for interactive design
and fabrication of wood joints designed for expert machinists with
limited experience working in a particular domain [32]. By combin-
ing the power of automated systems with a dynamic, human-driven
workfow, Odyssey is an example of how to enable more users to
work efciently along-side automated tools in complex domains
beyond foating-point.

This paper makes four contributions:
(1) An investigation of the needs of novices and experts, summa-

rized in a three-stage workfow for foating-point expression
rewriting: diagnosis, solution generation, and tuning. This
workfow combines both automated tools and human rewrit-
ings.

(2) An iteratively developed workbench, Odyssey, that supports
this workfow.

(3) A study of Odyssey’s efectiveness based on feedback from
expert users who completed a set of challenging tasks drawn
from real-world numerical problems.

(4) A discussion of the implications of our work for the design of
interactive expert tools that combine human and automated
design space search.

2 BACKGROUND AND RELATED WORK
Odyssey draws on techniques from the developer tool literature on
program visualization and program history to addresses key chal-
lenges developers face in the domain of foating-point arithmetic.

2.1 Program Visualization for Debugging
Floating-point error analysis and repair involves a mix of debugging
and performance optimization work. Odyssey is thus inspired by
work aimed at program visualization for debugging. Systems such

Odyssey: An Interactive Workbench for Expert-Driven Floating-Point Expression Rewriting UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA

as Whyline [31], Timelapse [9], and FireCrystal [38], which connect
code with runtime behavior by visualizing execution traces, inspire
several of Odyssey’s interactions, including the interactive “local
error” heatmap visualizing per-operation foating-point error for a
particular input. Moreover, a series of papers on integrating visual-
izations with code, such as Theseus [34], which provides always-on
visualizations of runtime state; Projection Boxes [33], which gives
programmers more control over which runtime values are visual-
ized; and Hofswell et al. [24], which provides recommendations
for embedding visualizations in code, are refected in our design
of Odyssey’s error graph, which allows programmers to visualize
foating-point error and control which input values and rewritings
are visualized. Odyssey sees similar benefts from these designs as
prior work: opening up space for programmer exploration and ob-
servation, and thereby giving programmers a fuller understanding
of the problem space and a richer set of interactions for comparison
and repair.

That said, foating-point rounding error is a continuous, numeric
quality of a program, and the “tuning” stage of numerical work
therefore has a lot of analogs to performance optimization. Beck
et al. [6] and PerformanceHat [12], for example, visualize the pro-
portion of runtime spent at each each line of code in the program.
These approaches inspire our “heatmap” design for local error in-
formation, coloring each foating-point operation in the program
based on the amount of foating-point rounding error it contributes
to the result. The Roly-poly [26] project is also quite similar to
Odyssey, aiding developers in exploring and selecting performance
optimizations for image processing code. Odyssey explores a simi-
lar system-aided optimization workfow, but for accuracy instead
of performance optimization.

2.2 Maintaining and Reviewing Code Versions
To understand, experiment with, and collaborate on code, develop-
ers author and compare multiple program alternatives and histo-
ries [13]. Tools such as Azurite [48], Verdant [29], and Variolite [28]
provide explicit support for multiple program versions. For example,
Verdant helps data scientists compare, replay, and simplify histories
for code in computational notebooks [29]. Also, Head et al. [23]
introduce “code gathering” techniques that fnd the minimal code
slices in a program that produce a selected set of results. Comparing
and combining multiple alternative rewritings is a also key part of
foating-point error repair.

Odyssey maintains a history of rewritings both to provide a his-
tory of how a rewriting was developed and also allow developers
to visualize, compare, and combine multiple alternatives, provid-
ing explicit internal support to what would otherwise be internal
mental operations, thereby reducing cognitive load and allowing
developers to focus on the higher-level problem-solving aspects.

2.3 Floating-Point Arithmetic and Numerical
Analysis

Floating-point arithmetic, defned by the IEEE 754 standard [25],
and variations of this standard form the standard number repre-
sentation in most programming languages [37]. However, foating-
point arithmetic is subject to rounding error, and even elementary

computations often permit signifcant error [19]. Numerical anal-
ysis provides a set of mathematical tools to analyze, bound, and
reduce this error [22]. However, many programmers are unfamiliar
with numerical analysis techniques, and even fewer have a thor-
ough understanding of how to apply these tools.

Researchers have thus developed a vast menagerie of tools au-
tomating specifc numerical analysis techniques, including Rosa [15]
for afne arithmetic, FPTaylor [43] for error Taylor series, and
Ariadne [5] for root fnding. Other tools repurpose static analy-
sis techniques to fnd foating-point rounding errors; such tools
include Fluctuat [20], which uses abstract interpretation; FPDe-
bug [7], which uses a dynamic execution with shadow variables;
and CGRS [11], which uses evolutionary search. These tools can
fnd inputs with high rounding error or, in some cases, certify the
absence of such errors. Programmers can then use the error found
to attempt to understand the source of the rounding error, and
ultimately fx it. One popular tool combining these steps is Her-
bie [39]. Herbie uses sampling techniques to identify foating-point
error; constructs candidate rewrites using algebraic and analytic
identities, and tests those rewrites against higher-precision execu-
tions to identify the rewrite with the lowest foating-point error.
In recent releases, Herbie can output multiple suggestions with
diferent performance and accuracy characteristics [42].

Unfortunately, all of these tools, Herbie included, are difcult
for developers to use and integrate into their workfows. Users are
typically expected to identify the expression and inputs of interest
up front; compare them to other sources or the user’s own ideas;
and make trade-ofs between accuracy and other goals (e.g., main-
tainability), all without tool support. Users are often recommended
to switch between their code editor, version control system, a math-
ematical visualization tool, and multiple Herbie instances in order
to solve a single problem [30]. VSCode-PRECiSA [2], a VSCode
interface for the PRECiSA command-line tool [45] designed to sup-
port the process of analyzing a single program in several ways, is
somewhat of an exception; however, it does not address the prob-
lem of tool interoperation. We developed Odyssey to address these
limitations by providing a single integrated workbench for the full
foating-point rounding error workfow. To lower the barriers to
adoption, Odyssey uses Herbie, a widely used and open source
tool [30, 44], under the hood.

2.4 Expert tools for design space search
Odyssey is an expert tool for numerical analysts to re-write foat-
ing point expressions. Unlike tools for end-users, expert tools are
designed for users with extensive design and implementation expe-
rience. Experts have honed specialized workfows, leverage insights
to improve upon automated or semi-automated approaches, and
are comfortable wading into low-level details. For example, ex-
pert developers optimize the performance of applications [12] and
specialized pipelines. In the domain of high-performance image
processing, Roly-Poly [26] is a system built on top of the Halide
compiler [41] for expert engineers to explore trade-ofs and decide
among possible optimizations. Odyssey is similar to Roly-Poly in
that it supports interactive workfows with an automated tool to
support expert users. In the statistical analysis domain, multiverse
analysis tools such as Boba [35] and Multiverse Debugger [21]

UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA Edward Misback, Caleb C. Chan, Bret Saiki, Eunice Jun, Zachary Tatlock, and Pavel Panchekha

Figure 2: Users enter a new expression.

enable expert statistical analysts to assess the robustness and sensi-
tivity of analysis results. The intended users are experts in statisti-
cal analysis but not necessarily in multiverse authoring. Similarly,
Tsugite helps expert fabrication users create new wood joints [32].
Odyssey adds to this growing body of research on expert tools for a
new domain, and we discuss key insights that could serve as design
principles generalizable across domains (section 8).

3 USAGE SCENARIO
Alex, a numerical analysis expert, has received a report that there is
an issue in the asinh function of a popular programming language’s
standard library.2

Alex now needs to develop an accurate implementation of the
asinh function.

3.1 A Typical Debugging Process
The asinh function is defned, for positive � , as asinh(�) = log(� +√
�2 + 1). Based on the report, Alex hypothesizes that the issue

involves the high range of the function’s input. The �2 term will
overfow for large � .

They aren’t immediately sure how to fx this. They turn to a
state-of-the-art automated tool, Herbie, for help. Alex runs Herbie
on the asinh expression. Herbie suggests a replacement expression
and shows an error plot for the original and fnal expressions.

Alex wants to start rewriting, but now faces a series of obstacles.
First, Herbie’s error plot suggests that there is another source of

error in the expression—small inputs, between 0 and 1. Alex needs
to diagnose the cause of this error by fnding a subexpression to
rewrite. Alex sets up a REPL for the math library and manually
steps through each subexpression. Alex considers its input and
output ranges to see where errors occur.

Second, Alex needs to generate new solutions and test them. Al-
though Herbie suggests a potential rewrite, it is still error-prone
for small inputs. Drawing on their experience, Alex wants to try
out new expressions, but Herbie does not support this. As a result,

2As mentioned earlier, this issue is based on a real-world problem that a numerics
expert recently found and addressed for the Rust standard library using Herbie [1]

Alex abandons Herbie, writes a new expression, and sets up a new
testing framework. Alex is frustrated that they have to fgure out
how to set this testing up by themself, even though Herbie has
internal tools that are capable of this. Future iterations will require
Alex to start all over, discouraging them from exploring and fnding
an expression with more desirable error characteristics.

Third, Alex fnds two rewrites which fx adjacent parts of the
domain, and now wants to join them. This requires tuning the
constant used for picking the branching point. However, in Alex’s
current test framework, the consequences of changing the constant
are not evident. In other words, an iterative design process is not
supported.

In order to address the above issues, Alex spends hours stitching
together workarounds.

Alex needs an integrated tool designed for human-directed ex-
pression debugging and interactive rewriting. Odyssey is designed
to help experts like Alex who fx foating-point bugs that impact
the core of a programming language.

3.2 Using Odyssey
First Stage: Diagnosing Problems. Using Odyssey, Alex begins by
typing the mathematical defnition, log(x + sqrt(x * x + 1)),
into Odyssey’s expression entry box (see Figure 2), along with the
range of possible x values. In this case, the defnition is only valid
for positive � , so Alex enters 0 as the lower bound. Since this is a
library function that can be executed on any input, Alex leaves the
default upper bound of 10308 in place. The expression and initial
input range are used to initialize Odyssey’s main screen (Figure 3)
and appear in the top left corner of the screen (Figure 3A). If the
user needs to launch multiple Odyssey sessions, this part of the
screen will help them diferentiate them.

Beneath the initial expression, Alex sees Odyssey’s rewritings
table (Figure 3B). The rewritings table allows the user to collect
multiple versions (or “rewritings”) of the expression and compare
them for accuracy. Each rewriting in the table shows its average
accuracy, and rewritings can also be selected or hidden to control
the display of other information in Odyssey. Initially, the rewritings
table contains a single rewriting, the direct implementation of their
expression. In this example, the initial rewriting has quite high
error (45.28 bits out of 64) indicating that there is quite some work
left to do to produce an accurate implementation.

To better understand the source of this error, Alex refers to the
error plot (Figure 3C). This plot shows the error of every rewriting
in the table. The horizontal axis shows diferent input values �
spanning hundreds of orders of magnitude; the vertical axis shows
error, with higher values being worse. In this example, three regions
are clearly visible: inputs � < 1, with high error; inputs 1 < � <
10150, with low error; and inputs 10150 < � , with high error again.
Distinct regions like these often have distinct causes of error and
are a starting point for exploring more deeply.

To begin investigating, Alex clicks on one of the points in the
error plot; this updates Herbie’s “local error heatmap” display (Fig-
ure 3D). Local error is an internal heuristic in Herbie that identifes
which operations in a rewriting cause rounding error at a given
point. By clicking on one point with 10150 < � , and another point
with � < 1, Alex confrms that this expression has two distinct

Odyssey: An Interactive Workbench for Expert-Driven Floating-Point Expression Rewriting UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA

Figure 3: Diagnosis. The specifcation (A) shows the expression the user is trying to implement. The rewritings table (B) shows
the expressions the user has tried. The error plot (C) shows the error of the current expression. The local error heatmap graph
(D) shows the error breakdown of the currently selected point.

Figure 4: The Expression Details view shows a LaTeX render-
ing and plain text to help users understand and work with
the selected expression.

sources of error: for large inputs � , the source of error is the sqrt
and * operations, while for small inputs � , the source of error is the
log operation. After diagnosing the operations with error and the
afected inputs, Alex begins generating solutions to these foating-
point rounding error problems.

Second Stage: Generating Solutions. To start generating solutions
quickly, Alex queries an automated tool using the “Get expressions
with Herbie” button (Figure 5A). This automatically translates the
expression into Herbie’s input format; invokes Herbie; evaluates
the error of each of Herbie’s suggestions; and translates each one
back to a human-readable format.

In this case, invoking Herbie adds fve suggestions to the rewrit-
ings table and to the error plot (Figure 5C). Since each rewriting
in the table lists its error, Alex sees immediately that Herbie’s sug-
gestions reduce the original 45.28 bits of error to as low as 0.02 bits
of error. Moreover, each rewriting’s error is also graphed on the
error plot, with diferent rewritings shown in diferent colors. Users

can highlight the plot for an expression by clicking on its row in
the table. For example, by clicking Herbie’s ffth suggestion, log(x
+ hypot(1, x)), Alex sees that this expression avoids error for
10150 < � but still has error for smaller values of � < 1. Multiple
suggestions will probably need to be consulted, compared, and com-
bined to achieve Alex’s accuracy, performance, and maintainability
goals.

Herbie is not the only source of rewritings in Odyssey. In fact,
human creativity is often needed to overcome roadblocks for auto-
mated tools, and rewritings may also be sourced from other tools,
from papers, or from online references. Therefore, Odyssey allows
Alex to add rewritings directly to the rewritings table using the
edit box (Figure 5B). As they type, their expression is automatically
rendered and an error estimate is provided, to help avoid typos and
other low-level mistakes. As Alex works on this expression, the
table of rewritings will grow to contain all of the various rewritings
or ideas they have considered. By leaving this basic organizational
task to Odyssey, Alex is able to focus on high-level reasoning.

Third Stage: Tuning. After generating solutions to the various foating-
point issues in this expression, Alex wants to understand how these
rewritings can be combined to produce a single implementation
of the expression that satisfes their accuracy, performance, and
maintainability goals (Figure 6).

Since, in this case, many of the rewritings are generated by
Herbie, they start by understanding those rewritings in greater
depth. To do so, Alex clicks on one of these rewritings and looks
at the derivation provided for it (Figure 6A). The derivation of a
Herbie-generated rewriting shows the sequence of steps Herbie
used to produce it. Alex scans one derivation that has caught their
attention both for ideas that can be lifted and combined with a
diferent rewriting, as well as for potentially dangerous steps. In
this case, they spot that Herbie used a Taylor series expansion to
derive one of the rewritings. Taylor series expansions are dangerous,

UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA Edward Misback, Caleb C. Chan, Bret Saiki, Eunice Jun, Zachary Tatlock, and Pavel Panchekha

Figure 5: Solution generation. User can request rewritings from Herbie by pressing a button (A) or enter their own using the
expression edit box (B), which provides live feedback and estimates the expression error on the current sample. The rewritings
table and the error plot (C) are updated every time a rewriting is added, allowing the user to compare the quality of diferent
rewritings.

because they are often valid only for inputs in a certain range,
and can lead to high error if used outside of that range. In this
case, Herbie guarded the Taylor series with the conditional � ≤ 1;
however, it may be possible to tune the condition further.

To begin tuning this piece, Alex uses Odyssey’s range adjustment
control (Figure 6C). Since the conditional has a threshold at 1, Alex
enters a range of inputs near 1: 10−52 ≤ � ≤ 1012. When Alex
updates the range, Odyssey samples a new set of inputs all chosen
from the selected range, and the plot updates to show only the new
set of inputs. Because these inputs are all clustered near 1, Alex can
now examine error in this range at much higher resolution. Here,
the higher resolution reveals what inputs around 1 have a spike in
error.

To fx this new-found problem, Alex continues to test new rewrit-
ings using the expression edit box. Since, at this point, Alex has
already found many quite-accurate rewritings, they choose to mod-
ify an existing rewriting using the copy-to-clipboard button (Fig-
ure 6B). This allows Alex to easily make small adjustments, such
as raising or lowering the threshold by rewriting the branch condi-
tion, and see how that afects the inputs they have focused on. Alex
may not always tune expressions for accuracy; they might instead
simplify rewritings to make them run faster, or make modifcations
to improve readability and maintainability. In those cases, the error

graph allows Alex to validate that error has not increased unaccept-
ably. Finally, Alex has tuned the expression to their liking, so they
use the copy-to-clipboard button to copy the fnal expression and
insert it into their program.

Reviewing these steps, Alex used a three-step foating-point
error improvement workfow: diagnosing the sources of foating-
point error; generating candidate solutions to these source of error;
and then tuning and validating the resulting solution until it met
their accuracy, performance, and maintainability goals. The entire
process was orchestrated through Odyssey’s table of rewritings
and error plot, which track the various rewritings Alex already
considered and allow Alex to easily compare rewritings over the
input range. Odyssey additionally provided convenient ways to
leverage the automated error-improvement tool Herbie, including
invoking Herbie, visualizing internal heuristics, and presenting
derivations. Combined, these features allow Alex to focus on higher-
level concerns such as accuracy-improving rewrites and acceptable
trade-ofs between their goals.

4 ITERATIVE DESIGN PROCESS
To understand how to meet the needs of Herbie’s users, after re-
viewing user-submitted bug reports, testing changes to the existing

Odyssey: An Interactive Workbench for Expert-Driven Floating-Point Expression Rewriting UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA

Figure 6: Tuning. The user can use derivations (A) to help them understand Herbie-generated rewritings. Each expression can
be copied using the copy button (B) for easy editing of existing rewritings. The user can use the input range editor (C) to “zoom
in” on critical ranges—i.e., resample and reanalyze all expressions on a new range. Above, the user has tried rounding some of
an expression’s constants after zooming.

Herbie user interface, and mocking up a new interface, we con-
ducted an iterative user design study. As we observed users working
with the prototype, we identifed new needs and added features to
meet those needs.

User Design Study with Prototype
Our user design study consisted of nine interviews with participants
ranging from foating-point novices to experts. Most participants
were graduate students working on foating-point-related research
with at least two years of experience. We spaced these interviews
out and iteratively added features to Odyssey, responding to user
concerns after each interview. We made the following observations.

First, we found that more experienced users iteratively submit-
ted many hand-written programs to Odyssey. In some cases, users
modifed a Herbie result, used Odyssey’s reported error to confrm
that the change didn’t harm accuracy, and then used the modi-
fed program as a base for further modifcations. In other cases,
users modifed a Herbie result and re-ran Herbie on the modifed
expression, helping Herbie around a road-block of some kind and
achieving a lower error as a result. We also saw users combining
pieces of diferent programs into a single fnal program. Users de-
scribed implicit trade-ofs, for example noting that Herbie’s result
was very complex, and that deleting certain terms from Herbie’s
result was less accurate but easier to read.

Second, we noticed that many participants, including both novices
and experts, struggled to explain why there was error in an expres-
sion, even when they could see the error in Odyssey’s error plot. For√
example, in the program log(� + �2 + 1), most users could guess
that the error for large � values was caused by overfow, but far
fewer participants could identify that error for small � was caused
by the log() operation.

In a follow-up conversation with the Herbie developers, we
learned that Herbie used a metric called “local error” to identify
which operations were likely sources of error. We decided that

exposing this metric to the user as a local error “heatmap” (see Fig-
ure 3D) could help users better understand foating-point error.
Participants immediately began using per-point local error to ex-
plain why error occurred for specifc inputs to specifc programs.
In this process, we also discovered that Herbie’s local error imple-
mentation had a subtle bug on specifc, rare inputs, leading to a
patch.

Finally, after initially removing derivations (see Figure 6A), we
realized that they were an important foundation for users’ trust in
Herbie’s results. For example, one participant was surprised when
Herbie recommended the expression “1.0” as an “improved” version
of some much more complex expression and became skeptical of
all of Herbie’s other outputs, manually performing derivations to
check that those expression had been computed correctly. Adding
back support for derivations gave users more trust in Herbie’s
suggestions.

Through the user design study, we observed the following:

◦ Experienced users follow an iterative process when rewriting
expressions.

◦ Rapid feedback during expression input helps users catch
low-level mistakes.

◦ Users need help understanding what part of the expression
is causing error.

◦ Users want justifcation and explanation for the steps of
automated tools.

5 EXPRESSION REWRITING WORKFLOW
AND DESIGN OBJECTIVES

Our design study led us to model foating-point error improve-
ment as a well-defned workfow consisting of three main stages:
diagnosis, solution generation, and tuning.

First Stage: Diagnosing Problems. In this stage, users identify prob-
lematic operations within expressions, determine which problems

UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA Edward Misback, Caleb C. Chan, Bret Saiki, Eunice Jun, Zachary Tatlock, and Pavel Panchekha

Figure 7: The general workfow supported by Odyssey. Odyssey starts with a real-number specifcation, analyzes sources of
error, creates diferent solutions based on the analysis, and tunes solutions based on user’s needs.

are relevant to their objectives, and fnding starting points for fur-√
ther analysis. For instance, in an expression like log(� + �2 + 1),
users must determine that the �2 operation overfows for large
values of � , while the logarithm is inaccurate for small values of
� . The user then decides whether large values of � are relevant in
their environment. If so, they focus on avoiding the overfow in �2.

We developed two principles to support diagnosis. First, users
need ways to focus analysis on the parts of the input range and ex-
pression they care about investigating—without losing track of the
broader analysis. Second, even experts need tools to help determine
which operations cause error without relying on their expertise or
resorting to trial-and-error operation replacement.

Second Stage: Generating Solutions. In the second stage, users gather
potential rewritings from a variety of sources. The objective is to
create a pool of rewritings that the user can evaluate and combine
to address the problems identifed in the frst stage. While existing
tools, like Herbie, are a valuable source of ideas and potential rewrit-
ings, the user must still track and organize the outputs. Moreover,
rewriting ideas may come from many other places: other automated
tools, papers, online references, and even the user’s own creativity.
Users need to collect the available rewritings, keep track of their
origin, and organize them for easy evaluation.

We developed three principles to support solution generation.
First, there must be a central repository of rewritings drawn from
multiple sources. The repository must also store source-specifc
details, such as Herbie’s derivations. Second, since users themselves
are a major source of ideas, manual input of rewritings must be
supported, with instantaneous feedback to provide low-level error
checking. This supports a tight feedback loop and eases iterative
exploration. Third, where possible, it should be possible to use
user inputs as starting points for additional automated exploration,
allowing users to overcome roadblocks faced by automated tools.

Third Stage: Tuning. In the third stage, users test, compare, and
tweak rewritings to optimize for their accuracy, performance, and
maintainability goals. Often the diagnosis and solution generation
phases help users identify multiple independent problems and mul-
tiple independent rewritings that address them. Users must combine
these rewritings to address error. This combination process is itself
iterative. Users needing to validate that the combination did not
introduce its own error. Moreover, the combination process might
itself need tuning. Users may want to adjust the threshold at which
they switch from one rewriting to another. Overall, this stage in-
volves iterative refnement and experimentation until the user is
satisfed with the result.

We developed two principles to support tuning. First, the user
needs ways to compare rewritings for accuracy and get instanta-
neous feedback as they work. Second, users need explicit support
for combining rewritings, whether directly using “if” conditions or
indirectly by allowing the user to see multiple rewritings at once.

The order of these stages is not fxed, and users may iterate
between them, but we think these principles address explicit user
needs during foating-point error improvement with an automated
tool.

6 IMPLEMENTATION
Odyssey is implemented in two pieces: a “backend” that uses Herbie
to dispatch numerical tasks, and a “frontend” implemented using
web technologies to present an interactive workbench UI to the
user. Odyssey can be used via a web browser or embedded into
tools like Visual Studio Code.

6.1 “Database Workbench” Architecture
The key to supporting our design principles is Odyssey’s “database
workbench” architecture. In this architecture, Odyssey stores a list

Odyssey: An Interactive Workbench for Expert-Driven Floating-Point Expression Rewriting UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA

of rewritings that the user is exploring and makes calls to indepen-
dent analysis, visualization, and generation tools that run on the
backend. This architecture stores all of the state on the frontend,
allowing direct manipulation by the user. The automated analysis,
visualization, and generation tools, meanwhile, are stateless, being
invoked by Odyssey on whatever rewritings the user is currently
considering. This architecture puts the user at the center at the
center of the search.

This architecture also leads to a natural separation of concerns
between the frontend and backend. The Odyssey frontend imple-
ments all interactions, graphics, and manipulation actions. However,
all numerical tasks (sampling, evaluating error, and generating ex-
pressions) are the responsibility of the backend. This ensures proper
support for low-level operations like enumerating foating-point
numbers and other numerical tasks that depend on the user’s tar-
get environment. While Odyssey currently only invokes Herbie
subsystems, the backend is intended to invoke other tools as well.

6.2 The Odyssey Frontend
The Odyssey frontend provides a rewritings table and error plot
to help users diagnose problems, generate solutions, and tune the
results.

The main state is stored in the rewritings table, shown in Fig-
ure 5. All rewritings the user is considering—including both those
generated by Herbie and those entered by the user, are stored here.
Each rewriting also shows its average error, for easy comparison.
A checkbox allows the user to hide expressions from the error plot
and other parts of the UI, which functions as a kind of “archiving”
operation so that users can ignore sub-par rewritings without an
irreversible deletion operation. Additionally, a clipboard button al-
lows users to copy rewritings, which is essential to users modifying
or combining rewritings. None of these interactions involve the
backend, and are thus instantly responsive to user action.

The input box allows adding rewritings to the table using a
natural mathematical syntax backed by a parser from the mathjs
library [17]. Odyssey then converts that input both to an instantly-
updating LaTeX render (to help users catch mistakes and typos)
and to the standard FPCore input format, which Herbie uses to
represent rewritings. Herbie is then invoked to analyze the error of
the new rewriting, which is then added to the plot. Additionally,
rewritings can be added to the table by invoking Herbie to generate
suggested rewritings; any rewritings suggested by Herbie are also
converted from FPCore back to LaTeX and mathematical syntax so
that the user does not have to understand FPCore in order to use
Odyssey.

The main visualization is a large error plot. This plot shows the
error on all of the sampled inputs, for each of the rewritings in the
rewritings table, with colors helping users match each rewriting
to its error plot. Because rewritings often have identical error over
some range the user can click on a rewriting in the table to highlight
it in the error plot; users can also use checkboxes in the table to
hide expressions from the error plot. By hovering over each point
in the error plot, the user can see the exact sampled input, and by
clicking on a point, they can update parts of the UI (such as the
local error heatmap) to focus on that specifc input. The user can
also adjust the input domain using an input range selector below

the plot. Changing the input domain causes Odyssey to resample
inputs, evaluate each rewriting on the new inputs, and redraw the
error plot using the newly-evaluated errors. Once again, besides
adjusting the input range, all operations are instantaneous and do
not invoke the backend.

On its own, Odyssey does not provide any additional features.
However, Odyssey is extensible, and tools invoked by the backend
can ofer additional visualizations. To see these additional visualiza-
tions, the user selects a specifc rewrite, and the visualizations are
shown beneath the main UI. Selecting the specifc rewriting means
that diferent rewritings, which might come from diferent sources,
can provide diferent kinds of justifcations or explanations. Our
Herbie backend provides two such visualizations: the local error
heatmap and derivations. When Odyssey is extended to support
additional backend tools, we expect each tool to provide its own
additional visualizations.

6.3 The Herbie Backend
Odyssey’s Herbie backend is used to sample inputs, evaluate the
error of rewritings, and suggest new rewritings to the user. Herbie
was originally designed as a batch-mode tool, so part of our work
involved adding an HTTP API to expose various internal analysis
functions so that they can be invoked by Odyssey. Luckily, the
Herbie features that we wanted to expose, including input sam-
pling and error evaluation, were already independently-invocable
functions in Herbie.

A key challenge in the backend is dealing with latency. Herbie’s
initial design as a batch-mode tool means that Herbie typically
samples inputs, evaluates error, and suggests rewritings every time
it is invoked, even though some of those steps (like sampling inputs)
are slow while others (like evaluating error) are fast. To address
this, Odyssey’s Herbie backend independently caches the outputs
of each step (like the sampled inputs). This way, evaluating the
error of an expression is done on cached sampled inputs and takes
milliseconds instead of resampling the inputs, which would take
seconds.

Further, all of Odyssey’s invocations of the backend are asynchro-
nous, allowing the user to continue working while Herbie processes
their requests.

By keeping the latency of most operations under a second and
ofering access to previously-inaccessible heuristics like local error
(an internal search heuristic) and expression derivations (previously
a debugging tool for Herbie developers), Odyssey’s “database work-
bench” architecture allows users to stay in the fow of their work
as they solve rewriting problems.

7 EXPERT EVALUATION
The goal of the expert evaluation was to assess the efectiveness
of Odyssey in supporting the three-stage workfow we identifed:
diagnosing problems, generating solutions, and tuning expressions.

7.1 Protocol
We conducted an interview study with fve experts from the foating-
point community (see Table 1) to evaluate the efectiveness of
Odyssey in supporting the three-stage workfow. We recruited the

UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA Edward Misback, Caleb C. Chan, Bret Saiki, Eunice Jun, Zachary Tatlock, and Pavel Panchekha

Expert # Background:
1 Industry, FP hardware + supercomputing (num-

ber systems for minimization problems), 45+
years.

2 Professor, FP tools (mixed-precision conver-
sions and program analysis), 10+ years.

3 Grad student, FP hardware (datapath optimiza-
tion), 5 years.

4 Professor, verifcation (correctness analysis), 9
years.

5 Industry, FP hardware (interval analysis, tran-
scendental functions), 3 years.

Table 1: Five experts from the foating-point community
evaluated and suggested future directions for our work.

experts via email through professional networks and communi-
ties (e.g., FPBench). Each expert had diferent levels of experience
in academia and industry, ranging from 3 years to over 45 years,
and their backgrounds covered various aspects of foating-point
systems, including hardware design, verifcation, and optimization.

Each interview session was conducted over Zoom, with experts
operating the tool via remote control to avoid early issues we expe-
rienced with participants on networks with special confgurations.
Interviews lasted between 60 and 90 minutes and consisted of three
parts:

• Introduction and tutorial. The frst author briefy introduced
Odyssey and the problems it is designed to address. Then,
each expert followed a hands-on tutorial demonstrating the
usage of Odyssey on a simple example.

• Seven tasks. Each expert completed seven tasks, each de-
signed for one of the three workfow stages and aimed at
eliciting the experts’ reactions to diferent parts of Odyssey’s
interface (Table 2). If the experts encountered difculties, the
frst author provided guidance or reminded them of relevant
interface features from the tutorial.

• Exit survey and discussion. To conclude, each expert com-
pleted a survey (Table 3) and participated in a semi-structured
interview with the frst author, where the experts refected
on their experience with Odyssey and provided feedback
on potential improvements and extensions. The frst author
specifcally asked for experts’ opinions on the legitimacy of
the workfow we aim to support, its relevance to their work,
and the extent to which they felt Odyssey supported each
part of the workfow.

Throughout all three parts, the experts’ screens and audio were
recorded. The frst author also took note of the experts’ comments,
insights, and responses to the tasks and survey questions. All study
materials are provided as supplemental material.

7.2 Analysis and Results
We conducted an iterative, thematic analysis of expert solutions
and the frst author’s notes for each stage of the workfow. Below,
we discuss the experts’ responses to the relevant tasks and survey
items for each stage. Through this analysis, we aim to provide a

qualitative evaluation of Odyssey’s efectiveness in supporting each
part of the workfow.

First Stage: Diagnosing Problems. Task 1 required experts to analyze
the error in an inverse hyperbolic sine implementation and iden-
tify the parts of the expression causing errors, then decide which
operation or operations needed to be rewritten in order for the
rewriting to correctly handle large inputs. Among the fve experts,
four successfully completed this task, relying on Odyssey’s error
visualizations (see Figure 3).

P2 explored multiple input ranges in order to identify the two
problematic operations:

“This is across the entire sample... so I wonder if it’s doing
something diferent on this side [clicking a point with a
small � value and looking at the local error graph] So
there it’s all the log, and over there... [clicks a large �
value] it’s all the square root. So that’s interesting, it’s
actually coming from diferent operations.”

Here, the error plot efectively surfaced the two areas of high error
(small and large � values), giving the expert clear places to look
for troublesome operations. Then, by switching between inputs in
diferent regions, the expert was able to see that the problematic
operation was diferent between these regions.

In the survey (see item 3 in Table 3), all fve experts rated the
interface’s ability to help identify or confrm specifc problems with
expressions at a 7 out of 7. We attribute this success mainly to the
error plot and local error heatmap, which implemented the second
principle we identifed for a good diagnosis tool. They supported
the user in assigning responsibility for error without relying on
expertise or resorting to trial and error. As P2 concluded,

“Having the graph and being able to click on the diferent
places where error is high is defnitely nicer than just
looking at output in a text fle.”

Second Stage: Generating Solutions. We designed several tasks to
evaluate Odyssey’s support for collecting and evaluating new ex-
pressions that address the identifed problems in foating-point ex-
pressions. Close to all experts who attempted each task succeeded
(see Tasks 2 and 5 in Table 2).

Task 2 required experts to analyze a troublesome subexpression
from Task 1 and fnd a better rewriting for it. Then, experts needed
to bring the solution back to the original analysis and decide if
they were happy with it. Four of the fve experts who attempted
Task 2 successfully completed it, showing that the interface facili-
tated the collection of solutions and their integration into existing
expressions. Of those four, two experts found their own unique
approaches to solving the problem identifed in Task 1 rather than
relying on an automated solution. One expert pulled a factor of �
out of the square root, and another expert created a branch that
switched to an approximation for large values of � . Both of these
approaches showed low error on the error plot, though the experts
noted there could be issues with these choices (for example, branch-
ing impacts performance, and dividing by � is risky when � could
be 0). This showcases the fexibility of Odyssey in allowing users
to explore alternative solutions and evaluate their impact on the
error plot. (The expert who did not complete Task 2 was our frst

Odyssey: An Interactive Workbench for Expert-Driven Floating-Point Expression Rewriting UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA

Task Description√ Targeted part of workfow Success rate
1 ���(� + � · � + 1) is an expression for

the inverse hyperbolic sine. Identify the
parts of the expression causing errors
for large/small � .

Diagnose troublesome subexpressions and prob-
lematic ranges.

4/5

2 Use Odyssey to fnd a solution for the
troublesome square root subexpression
from task 1.

Generate solutions for the subexpression and
use these to optimize original expression.

4/4

3 Is your solution to task 2 good enough? Use visualizations to form evaluation criteria
for ending analysis.

4/4

4 Identify problems with branch expres-
sions in fully automated solutions for
task 1.

Explain important features of expressions and
diagnose issues.

3/4

5 Use Odyssey to fnd and recommend
log1p to solve small � .

Nudge an automated tool past roadblocks to
generate better solutions.

2/3

6 Evaluate whether the full solution for
the expression after tasks 1-5 is trust-
worthy.

Use Odyssey’s feedback on expressions and in-
formation about expression soundness to eval-
uate expressions’ trustworthiness and ftness
based on personal standards.

2/2

7 Use branch conditions to outperform
a fully automated rewriting for the ex-
pression (��� (�) − 2) + ��� (−�).

Mix solutions from diferent sources and tune
branch conditions to create stronger solutions.

3/4

Table 2: Experts worked through up to seven tasks to exercise the features of Odyssey before a survey-based discussion. Due to
time constraints, not all experts completed all tasks.

participant, with whom we lost much of the interview time due to
the networking issues mentioned earlier.)

Similarly, Task 5 asked experts to fnd a more accurate rewriting
for a subexpression applicable to small values of � . Three out of the
four experts successfully completed this task, further supporting
the efectiveness of Odyssey in assisting experts in gathering and
evaluating potential solutions.

P3 had the following to say about working through the process
up to Task 5:

“It feels like quite a natural way you might approach
this problem as a human. You’re burrowing down into
it more precisely and pushing your error around a little
bit. I thought the transition of ‘we’ve moved the error
from the log into the subtract [using log1p], now I know
how to deal with the error in a subtract as well’ felt
natural, ... since ... once we fgure out it was going to be
the subtract that was giving us trouble, then [we can
use Herbie to rewrite successfully]. It gets there much
faster, but it’s cool that I also feel that I would have
thought about going in a similar direction.”

In the survey, experts rated the interface’s ability to generate
ideas for solving specifc problems (item 4) with scores ranging
from 5 to 7, with an average of 5.8. The interface’s efectiveness in
evaluating the quality of ideas quickly (item 5) was rated between 5
and 7, with an average of 6.4. These relatively high ratings indicate
that the experts found Odyssey helpful in generating and evaluating
ideas for improving foating-point expressions.

Users were able to use Odyssey to successfully generate a variety
of valid nontrivial new expressions for analysis, both using an

automated tool (e.g. the way we expected users to solve Task 2) and
by themselves (P5 and P4). This was signifcantly diferent from our
experience in the earliest parts of the design process. The ability
to send rewrites back to Herbie was a vital part of the solution
generation process for the three experts who were able to complete
Task 5.

Third Stage: Tuning. The third stage of our proposed workfow in-
volves tuning expressions to further optimize their accuracy and
performance. To assess Odyssey’s support for this stage, we evalu-
ated Task 7, as well as survey items 6 and 7, which inquired about
the interface’s support for comparing and mixing diferent expres-
sions.

Task 7 challenged experts to create a more accurate expression
than Herbie’s best alternative for a given expression by combin-
ing diferent solutions and fne-tuning the branch point. The task
demonstrated that a human can use Odyssey to outperform Herbie’s
internal heuristics when unique requirements call for a tailored
approach. After using the range zoom feature and noticing Herbie’s
solution was still outperforming their solution on a small region,
P2 remarked, “So in this view, we can see that we don’t have quite
the right number [for the branch point].” The expert then adjusted
the branch point based on the visual feedback.

In the survey, experts rated the interface’s capacity to help them
mix expressions from diferent sources (item 7) with scores ranging
from 4 to 7, with an average of 5.4. The interface’s support for com-
paring diferent expressions (item 6) was rated even more highly,
at an average of 6.4 (range from 6 to 7).

As we can see in the example above, the especially high rating
for comparison was likely a result of combining the ability to plot

UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA Edward Misback, Caleb C. Chan, Bret Saiki, Eunice Jun, Zachary Tatlock, and Pavel Panchekha

Survey Questions: Results: Average:
1 "The workfow made sense to me and I was able to follow it." 5, 5, 6, 7, 7 6/7

2 "This workfow matches my experience approaching real numerical analysis problems." 4, 6, 6, 6, 6 5.6/7

3 "The interface helped me identify or confrm specifc problems with expressions." 7, 7, 7, 7, 7 7/7

4 "The interface allowed me to generate ideas for solving a specifc problem." 5, 5, 6, 6, 7 5.8/7

5 "The interface let me evaluate the quality of ideas for rewritings quickly." 5, 6, 7, 7, 7 6.4/7

6 "It was easy to compare expressions in the interface." 6, 6, 6, 7, 7 6.4/7

7 "It was easy to mix together expressions from diferent sources in the interface." 4, 5, 5, 6, 7 5.4/7

8 "The interface let me focus on thinking about the problem at a high level." 5, 6, 7, 7, 7 6.4/7

9 "I can think of ways to extend this workfow + interface to address numerical analysis problems
that I have worked on."

5, 6, 7, 7, 7 6.4/7

Table 3: After completing the seven tasks, experts were asked to evaluate diferent aspects of the tool on a scale of 1 to 7.

the error for diferent expressions together with zooming to focus
on getting feedback on specifc regions. A couple experts (P4, P5)
mentioned wanting more support for combining expressions, espe-
cially around conditional branches. P4 explained that an automated
tool might be able to add guard conditions where appropriate.

Finally, the experts appreciated the potential power of mixing
human and automated solutions, with P3 commenting that sug-
gesting log1p and hypot to Herbie felt similar to proof assistant
tools where “if you just add in an additional step on the way or an
additional lemma... then it can actually nudge it over that threshold.”

In summary, the results from Task 7, along with the survey re-
sponses for items 6 and 7, provide evidence that Odyssey efectively
supports tuning expressions for optimal accuracy and performance.
The interface enables users to mix expressions and adjust coef-
cients while ofering real-time feedback, streamlining the tuning
process and enhancing the overall quality of foating-point expres-
sions.

8 DISCUSSION
As the frst expression rewriting workbench for the numerics com-
munity, Odyssey demonstrates how to build useful expert tools that
enable users to more efectively search a design space. Below, we
discuss three insights that were key to Odyssey’s design. These
insights serve as design principles that generalize to expert tools in
other domains where users want to navigate a design space.

Expose heuristics, not states. First, we found that exposing the
internal exploration-focusing heuristics of the tool, rather than
just the search states—for Herbie, mainly the local error—helped
users signifcantly, beyond its use in Herbie alone. By connecting
this heuristic to other simpler metrics (like the input error plot),
users developed explanations of the heuristic’s value that helped
them understand what was relevant about the search state—for
expression search, what subexpression was probably causing the
error. By comparing the heuristic and their explanation across
expressions, users could check if the issue was solved, even if the
expression shape was too complicated for an automated tool to
recognize.

Give access to intermediate representations. Second, we found that
giving the user ownership over intermediate parts of the search
made the tool much more useful. Doing so even allowed us to
catch a bug in the underlying tool. A widely held belief among
the HCI community is that higher levels of abstraction are more
desirable for end-users. Therefore, in an automated expert tool, it
can seem natural to hide the middle of a search from the user to
keep them working at a high level. However, in our study, we found
that users wanted to be able to see and control the search process.
Experts were particularly eager to introduce their own ideas and test
assumptions. In Odyssey, without building any separate tooling
except for a table that tracks candidates and synchronizes with
visualizations of existing automated analyses, users are able to
explore a much broader space of possible solutions in a way that
was not possible with the original tool, simply by letting a human
manage search candidates.

Test expert workfows with relative novices. Finally, we were able
to identify the appropriate level of abstraction in Odyssey because
of our own iterative design process that involved novices and ex-
perts. Involving novices sensitized us to the foundational cognitive
burdens experts had developed workarounds for. We realized that if
our tool could not help a novice at least understand basic issues, it
was likely too opaque for experts to use productively. The local error
plot, a key feature we would not have included without involving
novices, ended up being the most praised feature by experts.

Applications to other domains with user-driven design space search.
While this paper focuses on foating-point analysis, the above key in-
sights and fndings suggest generalizable principles for user-driven
design space search. The tool wrapped by Odyssey, Herbie, works
in a way that should be familiar to anyone who has worked with
a design space exploration tool or classical AI search: it identifes
a troublesome part of an expression, applies algebraic rewrites or
approximations to that part of the expression to obtain new expres-
sions, tests those expressions to see if they are worth exploring,
and fnally merges the best options.

The shape of this process matches the workfow we describe
for an analyst identifying and solving problems with an expres-
sion step-by-step while tracking possible rewriting directions. This

Odyssey: An Interactive Workbench for Expert-Driven Floating-Point Expression Rewriting UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA

search shape is used in tools across many domains, including in au-
tomated theorem provers, carpentry compilers, machining systems,
and ASIC design space exploration tools. Yet, expert tools in these
domains do not apply the above three principles. As a result, the
tools remain difcult to use and error-prone. We hypothesize that
applying the principles will improve expert tools in other domains
where users search a design space.

8.1 Limitations and Future Work
A major limitation of our design process was the tight design loop
we had to maintain during development. While this was necessary
to ensure we were building a system that would be useful to users,
this meant we had to compromise on the polish of some features and
altogether avoid others which would take too long to implement
or require disturbing many parts of the interface. With more time,
we plan to further improve the interface’s layout and provide more
structured expression editing support.

Of course, the main future work we have planned is to extend
Odyssey to incorporate more analyses and sources of rewritings,
including ideas like operation cost analyses and hardware-specifc
rewrites that were mentioned by the experts in our study. Tools like
PRECiSA [45] that already have an HTML-based analysis interface
may be a good starting point for testing these integrations.

Floating-point experts were very appreciative of our work, and
saw a variety of ways it could be extended to further support their
particular areas of expertise. These included ideas like adding sup-
port for multi-precision rewritings, incorporating operation cost
analyses from Herbie and other tools, adding ways of helping hu-
man users simultaneously optimize at least 3 variables, and increas-
ing support for splitting expressions into subregions and subex-
pressions based on domain-specifc heuristics.

Odyssey also has clear potential application in foating-point
education. Several of our tasks asked users to explain to the inter-
viewer potential problems with an expression using the interface,
and both the experts and the novices in our formative study were
able to point out areas of high error, select points, and zoom in to
get a better look at problem regions to support diagnostic claims.
Odyssey has the potential to thrive in a classroom setting; it could be
used by an instructor to show of how expression rewriting makes
expressions more accurate or by students to explore and diagnose
error sources an expression and try fxing them. We plan to try
applying Odyssey in an undergraduate class covering foating-point
representations soon.

We are also excited by the explanatory potential ofered by the
incorporation of large language models (LLMs) like GPT. We have
found that available language models can, in fact, ofer rewritings
and generate plausible explanations for users, but they are prone
to “hallucinating” and incorporating nonsensical logic, so their
output must be validated before it is used. With access to Odyssey’s
calculation and validation tools, an LLM might be able to avoid
these issues.

Finally, a major possible extension was brought up independently
by two diferent participants, who commented that they would be
very interested in plugging in additional visualizations showing
actual output efects of errors for each expression. For example, one
participant has worked with expressions representing ellipses, and

wanted to see how diferent kinds of error could lead to distortion
of the ellipses. Allowing for additional visualizations would be a
major possible improvement, since it will help users understand
whether the error they see on the error plot matters when code is
compiled and run in practice. If (as with ellipses) the output space
can be mapped back to specifc input values, combining output
visualization with the error graph heatmap will let experts relate
points with noticeable error in the actual output to the particular
mathematical operation causing that error.

Overall, we are excited to see what foating-point experts and
novices end up doing with Odyssey and look forward to improving
our support for their work in the future.

ACKNOWLEDGMENTS
We thank the many friends and members of the foating-point com-
munity who helped us work through the design of Odyssey, and Jon
Froehlich and Joshua Horowitz for reading early drafts of this paper
and ofering feedback. We also thank our anonymous shepherds
and reviewers for guidance and valuable suggestions while prepar-
ing the fnal version of this paper. This work was supported by NSF
award 901386 and the NSF Graduate Research Fellowship Program
(GRFP). This material is based upon work supported by the U.S.
Department of Energy, Ofce of Science, Ofce of Advanced Scien-
tifc Computing Research, ComPort: Rigorous Testing Methods to
Safeguard Software Porting, under Award Number DE-SC0022081.
This work was also supported by the Applications Driving Archi-
tectures (ADA) Research Center, a JUMP Center co-sponsored by
SRC and DARPA.

REFERENCES
[1] 2022. Improving Rust with Herbie. https://pavpanchekha.com/blog/herbie-

rust.html.
[2] 2023. VSCode-PRECiSA. https://github.com/nasa/PRECiSA/tree/master/vscode-

precisa
[3] Micah Altman, Jef Gill, and Michael P. McDonald. 2003. Numerical Issues in

Statistical Computing for the Social Scientist. Springer-Verlag. 1–11 pages.
[4] Micah Altman and Michael P. McDonald. 2003. Replication with attention

to numerical accuracy. Political Analysis 11, 3 (2003), 302–307. http://pan.
oxfordjournals.org/content/11/3/302.abstract

[5] Earl T. Barr, Thanh Vo, Vu Le, and Zhendong Su. 2013. Automatic detection of
foating-point exceptions (POPL ’13).

[6] Fabian Beck, Oliver Moseler, Stephan Diehl, and Günter Daniel Rey. 2013. In situ
understanding of performance bottlenecks through visually augmented code.
In 2013 21st International Conference on Program Comprehension (ICPC). IEEE,
63–72.

[7] Florian Benz, Andreas Hildebrandt, and Sebastian Hack. 2012. A Dynamic Pro-
gram Analysis to Find Floating-point Accuracy Problems (PLDI ’12). ACM, New
York, NY, USA, 453–462. http://doi.acm.org/10.1145/2254064.2254118

[8] Sylvie Boldo, Jean-Christophe Filliâtre, and Guillaume Melquiond. 2009. Com-
bining Coq and Gappa for certifying foating-point programs. In International
Conference on Intelligent Computer Mathematics. Springer, 59–74.

[9] Brian Burg, Richard Bailey, Amy J Ko, and Michael D Ernst. 2013. Interactive
record/replay for web application debugging. In Proceedings of the 26th annual
ACM symposium on User interface software and technology. 473–484.

[10] Wei-Fan Chiang, Ganesh Gopalakrishnan, Zvonimir Rakamaric, and Alexey
Solovyev. 2014. Efcient Search for Inputs Causing High Floating-Point Errors.
In Proceedings of the 19th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPoPP ’14). Association for Computing Machinery, New
York, NY, USA, 43–52. https://doi.org/10.1145/2555243.2555265

[11] Wei-Fan Chiang, Ganesh Gopalakrishnan, Zvonimir Rakamarić, and Alexey
Solovyev. 2014. Efcient Search for Inputs Causing High Floating-point Errors.
ACM, 43–52.

[12] Jürgen Cito, Philipp Leitner, Christian Bosshard, Markus Knecht, Genc Mazlami,
and Harald C Gall. 2018. PerformanceHat: augmenting source code with runtime
performance traces in the IDE. In Proceedings of the 40th International Conference
on Software Engineering: Companion Proceeedings. 41–44.

https://pavpanchekha.com/blog/herbie-rust.html
https://pavpanchekha.com/blog/herbie-rust.html
https://github.com/nasa/PRECiSA/tree/master/vscode-precisa
https://github.com/nasa/PRECiSA/tree/master/vscode-precisa
http://pan.oxfordjournals.org/content/11/3/302.abstract
http://pan.oxfordjournals.org/content/11/3/302.abstract
http://doi.acm.org/10.1145/2254064.2254118
https://doi.org/10.1145/2555243.2555265

UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA Edward Misback, Caleb C. Chan, Bret Saiki, Eunice Jun, Zachary Tatlock, and Pavel Panchekha

[13] Mihai Codoban, Sruti Srinivasa Ragavan, Danny Dig, and Brian Bailey. 2015.
Software history under the lens: A study on why and how developers examine
it. In 2015 IEEE International Conference on Software Maintenance and Evolution
(ICSME). IEEE, 1–10.

[14] Nasrine Damouche and Matthieu Martel. 2017. Salsa: An automatic tool to
improve the numerical accuracy of programs (AFM).

[15] Eva Darulova and Viktor Kuncak. 2014. Sound Compilation of Reals (POPL).
14 pages. http://doi.acm.org/10.1145/2535838.2535874

[16] Arnab Das, Ian Briggs, Ganesh Gopalakrishnan, Sriram Krishnamoorthy, and
Pavel Panchekha. 2020. Scalable yet Rigorous Floating-Point Error Analysis. In
2020 SC20: International Conference for High Performance Computing, Networking,
Storage and Analysis (SC). IEEE Computer Society, Los Alamitos, CA, USA, 1–14.
https://doi.org/10.1109/SC41405.2020.00055

[17] Jos de Jong. 2013. math.js: An extensive math library for JavaScript and Node.js.
http://mathjs.org/

[18] European Commission. 1998. The introduction of the euro and the rounding of
currency amounts. European Commission, Directorate General II Economic and
Financial Afairs.

[19] David Goldberg. 1991. What Every Computer Scientist Should Know About
Floating-point Arithmetic. Comput. Surveys 23, 1 (March 1991), 5–48. http:
//doi.acm.org/10.1145/103162.103163

[20] Eric Goubault and Sylvie Putot. 2011. Static Analysis of Finite Precision Compu-
tations (VMCAI’11). 232–247. http://dl.acm.org/citation.cfm?id=1946284.1946301

[21] Ken Gu, Eunice Jun, and Tim Althof. 2023. Understanding and Supporting
Debugging Workfows in Multiverse Analysis. In Proceedings of the 2023 CHI
Conference on Human Factors in Computing Systems. 1–19.

[22] Richard Hamming. 1987. Numerical Methods for Scientists and Engineers (2nd ed.).
Dover Publications.

[23] Andrew Head, Fred Hohman, Titus Barik, Steven M Drucker, and Robert DeLine.
2019. Managing messes in computational notebooks. In Proceedings of the 2019
CHI Conference on Human Factors in Computing Systems. 1–12.

[24] Jane Hofswell, Arvind Satyanarayan, and Jefrey Heer. 2018. Augmenting code
with in situ visualizations to aid program understanding. In Proceedings of the
2018 CHI Conference on Human Factors in Computing Systems. 1–12.

[25] IEEE. 2008. IEEE Standard for Binary Floating-Point Arithmetic. IEEE Std. 754-
2008 (2008).

[26] Yuka Ikarashi, Jonathan Ragan-Kelley, Tsukasa Fukusato, Jun Kato, and Takeo
Igarashi. 2021. Guided Optimization for Image Processing Pipelines. In 2021 IEEE
Symposium on Visual Languages and Human-Centric Computing (VL/HCC). IEEE,
1–5.

[27] Anastasiia Izycheva and Eva Darulova. 2017. On sound relative error bounds
for foating-point arithmetic (FMCAD). 15–22. https://doi.org/10.23919/FMCAD.
2017.8102236

[28] Mary Beth Kery, Amber Horvath, and Brad A Myers. 2017. Variolite: Supporting
Exploratory Programming by Data Scientists.. In CHI, Vol. 10. 3–025.

[29] Mary Beth Kery and Brad A Myers. 2018. Interactions for untangling messy
history in a computational notebook. In 2018 IEEE symposium on visual languages
and human-centric computing (VL/HCC). IEEE, 147–155.

[30] Ronald T. Kneusel. 2017. Numbers and Computers. Springer Cham. https:
//doi.org/10.1007/978-3-319-50508-4

[31] Amy J Ko and Brad A Myers. 2004. Designing the whyline: a debugging inter-
face for asking questions about program behavior. In Proceedings of the SIGCHI
conference on Human factors in computing systems. 151–158.

[32] Maria Larsson, Hironori Yoshida, Nobuyuki Umetani, and Takeo Igarashi. 2020.
Tsugite: Interactive Design and Fabrication of Wood Joints.. In UIST. 317–327.

[33] Sorin Lerner. 2020. Projection boxes: On-the-fy reconfgurable visualization for
live programming. In Proceedings of the 2020 CHI Conference on Human Factors in
Computing Systems. 1–7.

[34] Tom Lieber, Joel R Brandt, and Rob C Miller. 2014. Addressing misconceptions
about code with always-on programming visualizations. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems. 2481–2490.

[35] Yang Liu, Alex Kale, Tim Althof, and Jefrey Heer. 2020. Boba: Authoring and
visualizing multiverse analyses. IEEE Transactions on Visualization and Computer
Graphics 27, 2 (2020), 1753–1763.

[36] B. D. McCullough and H. D. Vinod. 1999. The Numerical Reliability of Econo-
metric Software. Journal of Economic Literature 37, 2 (1999), 633–665.

[37] David Monniaux. 2008. The Pitfalls of Verifying Floating-point Computations.
ACM Trans. Program. Lang. Syst. 30, 3, Article 12 (May 2008), 41 pages. http:
//doi.acm.org/10.1145/1353445.1353446

[38] Stephen Oney and Brad Myers. 2009. FireCrystal: Understanding interactive
behaviors in dynamic web pages. In 2009 IEEE Symposium on Visual Languages
and Human-Centric Computing (VL/HCC). IEEE, 105–108.

[39] Pavel Panchekha, Alex Sanchez-Stern, James R. Wilcox, and Zachary Tatlock.
2015. Automatically Improving Accuracy for Floating Point Expressions (PLDI).

[40] Kevin Quinn. 1983. Ever Had Problems Rounding Of Figures? This Stock Ex-
change Has. The Wall Street Journal (November 8, 1983), 37.

[41] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo
Durand, and Saman Amarasinghe. 2013. Halide: a language and compiler for

optimizing parallelism, locality, and recomputation in image processing pipelines.
Acm Sigplan Notices 48, 6 (2013), 519–530.

[42] Brett Saiki, Oliver Flatt, Chandrakana Nandi, Pavel Panchekha, and Zachary
Tatlock. 2021. Combining Precision Tuning and Rewriting. In 2021 IEEE 28th
Symposium on Computer Arithmetic (ARITH).

[43] Alexey Solovyev, Charlie Jacobsen, Zvonimir Rakamaric, and Ganesh Gopalakr-
ishnan. 2015. Rigorous Estimation of Floating-Point Round-of Errors with
Symbolic Taylor Expansions (FM).

[44] The Herbie Development Team. 2013–. Herbie: Optimize foating-point expres-
sions for accuracy. https://github.com/herbie-fp/herbie

[45] Laura Titolo, Marco A Feliú, Mariano Moscato, and César A Munoz. 2018. An
Abstract Interpretation Framework for the Round-Of Error Analysis of Floating-
Point Programs (VMCAI). 516–537.

[46] U.S. General Accounting Ofce. 1992. Patriot Missile Defense: Software Problem
Led to System Failure at Dhahran, Saudi Arabia. http://www.gao.gov/products/
IMTEC-92-26

[47] Debora Weber-Wulf. 1992. Rounding error changes Parliament makeup. http:
//catless.ncl.ac.uk/Risks/13.37.html#subj4

[48] YoungSeok Yoon and Brad A Myers. 2015. Supporting selective undo in a code ed-
itor. In 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering,
Vol. 1. IEEE, 223–233.

A SUPPLEMENTAL MATERIAL

A.1 Expert Study
Below, we describe the procedure for our expert study of Odyssey.

A.1.1 Introduction and Background (8 min). Our process began
with an introduction and background session. This phase involved
introductions followed by a set of background questions aimed at
understanding the participant’s experience and usage habits around
numerical analysis tools. We asked about the participant’s years of
experience, when they last analysed the error of a foating-point
expression, their typical workfow for analysing high foating-point
error expressions, and their familiarity with the Herbie tool. If the
participant was not a user of Herbie, we sought to understand their
reasons for not using it and asked if there were ways they imagined
Herbie ftting into their workfow.

A.1.2 Tutorial (12 min). Following the introductory phase, we gave
the participant access to the Odyssey interface via Zoom and con-
ducted a twelve-minute tutorial to familiarize them with the Herbie
interface. The tutorial demonstrated several features using the ex-√ √
pression � + 1 − � for positive � . The features covered included
the specifcation of the expression being rewritten and ranges over
which it must be accurate, reading the error plots, local error identi-
fcation, selecting expressions from the rewriting table, expression
editing, opening a new expression in a diferent tab, and resam-
pling on a diferent range. Throughout this tutorial, we encouraged
participants to think out loud and provide feedback, emphasizing
our interest in continuous interface improvement.

A.1.3 Tasks (30-55 min). The next phase of our process was a task-
oriented session whose length depended on participant skill and
availability. The tasks were designed to exercise diferent parts of
the interface and to reveal insights about the participants’ under-
standing and ability to apply Odyssey for expression rewriting. The
tasks covered identifying sources of error in specifc mathemati-
cal expressions, using the Odyssey system to fnd and recommend
improvements, evaluating the efectiveness of proposed solutions,
and identifying problems in automated solutions. For each task,
specifc goals were set ahead of time in terms of interface usage and
problem-solving approach so we could decide if Odyssey was able

http://doi.acm.org/10.1145/2535838.2535874
https://doi.org/10.1109/SC41405.2020.00055
http://mathjs.org/
http://doi.acm.org/10.1145/103162.103163
http://doi.acm.org/10.1145/103162.103163
http://dl.acm.org/citation.cfm?id=1946284.1946301
https://doi.org/10.23919/FMCAD.2017.8102236
https://doi.org/10.23919/FMCAD.2017.8102236
https://doi.org/10.1007/978-3-319-50508-4
https://doi.org/10.1007/978-3-319-50508-4
http://doi.acm.org/10.1145/1353445.1353446
http://doi.acm.org/10.1145/1353445.1353446
https://github.com/herbie-fp/herbie
http://www.gao.gov/products/IMTEC-92-26
http://www.gao.gov/products/IMTEC-92-26
http://catless.ncl.ac.uk/Risks/13.37.html#subj4
http://catless.ncl.ac.uk/Risks/13.37.html#subj4

Odyssey: An Interactive Workbench for Expert-Driven Floating-Point Expression Rewriting

to meet the participant’s need and whether their usage represented
a novel approach. Here is the full list of tasks and usage goals:

(1) Identify relevant sources of error in the Rust ����ℎ
implementation.
• The participant should be able to determine the cause of
the error by clicking on two diferent points to see at least
two local error graphs.

(2) Use Odyssey to fnd and recommend ℎ���� .
• The participant should submit ���� (� ∗ � + 1) in a new
tab, ask Herbie for rewritings, and obtain ℎ���� (1, �) or
another solution.

(3) Determine whether the solution to task 2 is good enough.
• The participant should be able to integrate the result from
task 2 into the original expression and refer to the error
plot to justify their answer.

(4) Identify problems with branches (regimes) in auto-
mated solutions.

UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA

• The participant should be able to highlight areas of con-
cern by clicking on points around 1, where higher error is
shown.

(5) Use Odyssey to fnd and recommend a way of solving
small � with ���1�.
• The participant should be able to fnd a good solution for
the entire range of positive � values that doesn’t include
branches using Herbie’s suggestions.

(6) Determine trust in the expression.
• The participant should be able to verify the expression’s
equivalence to the original by checking the expression
derivation.

(7) Use Odyssey to create a branched solution.
• The participant should be able to create a branched ex-
pression that outperforms Herbie’s solution.

A.1.4 Survey and discussion (10-15 min). In the fnal phase, we
conducted a Google Forms survey that lasted between 10 to 15
minutes. The survey questions and results can be found in Table 3.

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Program Visualization for Debugging
	2.2 Maintaining and Reviewing Code Versions
	2.3 Floating-Point Arithmetic and Numerical Analysis
	2.4 Expert tools for design space search

	3 Usage Scenario
	3.1 A Typical Debugging Process
	3.2 Using Odyssey

	4 Iterative design process
	5 Expression Rewriting Workflow and Design objectives
	6 Implementation
	6.1 ``Database Workbench'' Architecture
	6.2 The Odyssey Frontend
	6.3 The Herbie Backend

	7 Expert Evaluation
	7.1 Protocol
	7.2 Analysis and Results

	8 Discussion
	8.1 Limitations and Future Work

	Acknowledgments
	References
	A Supplemental Material
	A.1 Expert Study

