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ABSTRACT 
In recent years, researchers have proposed a number of automated 
tools to identify and improve foating-point rounding error in math-
ematical expressions. However, users struggle to efectively apply 
these tools. In this paper, we work with novices, experts, and tool de-
velopers to investigate user needs during the expression rewriting 
process. We fnd that users follow an iterative design process. They 
want to compare expressions on multiple input ranges, integrate 
and guide various rewriting tools, and understand where errors 
come from. We organize this investigation’s results into a three-
stage workfow and implement that workfow in a new, extensible 
workbench dubbed Odyssey. Odyssey enables users to: (1) diagnose 
problems in an expression, (2) generate solutions automatically or 
by hand, and (3) tune their results. Odyssey tracks a working set of 
expressions and turns a state-of-the-art automated tool “inside out,” 
giving the user access to internal heuristics, algorithms, and func-
tionality. In a user study, Odyssey enabled fve expert numerical 
analysts to solve challenging rewriting problems where state-of-
the-art automated tools fail. In particular, the experts unanimously 
praised Odyssey’s novel support for interactive range modifcation 
and local error visualization. 

CCS CONCEPTS 
• Human-centered computing → Interactive systems and 
tools; Empirical studies in HCI; • Software and its engineering 
→ Software maintenance tools. 
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1 INTRODUCTION 
Floating-point arithmetic is widely used in scientifc, engineering, 
and graphical applications to approximate arithmetic on real num-
bers; typically, it is the only practical option available.1 However, 
foating-point arithmetic must be used with care, as rounding errors 
can cause foating-point arithmetic and real-number arithmetic to 
give dramatically diferent results. For example, naïve implemen-
tations of well-known mathematical equations like the quadratic 
formula can exhibit unacceptably-high rounding error Figure(1b). 
Rounding error can also ruin results for even extremely simple 
expressions. Figure1a shows that, for large foating-point values 
of x, the expression x + 1 - x can evaluate to 0 instead of the 
mathematically correct 1! Floating-point rounding error has caused 
unreproducible scientifc research, distorted stock market indices, 
and wartime casualties [3, 4, 18, 36, 40, 46, 47]. 

As a specifc example, a major bug in the implementation of 
asinh/acosh in the Rust standard math library went unnoticed for 
seven years. An automated test suite caught the bug in 2022 [1]. 

In order to diagnose and repair this kind of error, numerical 
analysis experts have developed techniques and tools for analyz-
ing and rewriting foating-point expressions over the last decade. 
These tools support and facilitate automated test generation [10], 
error analysis [8, 16, 20, 27, 43], and repair [14, 39]. For example, 
the open-source, state-of-the-art Herbie tool [39] takes as input a 
foating-point expression and uses algebraic and analytic identities 
to rewrite the expression via a complex search process. Despite 
wide adoption of tools like Herbie in industrial and national labs, 
users still fnd results are too complicated and that tools overlook 
seemingly obvious rewritings. 

1While alternatives exist, e.g., arbitrary-precision arithmetic, exact rational arithmetic, 
and constructive real arithmetic, they are orders of magnitude slower than hardware 
foating-point, and are thus inappropriate for many applications. 
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# FP arithmetic seems ok 
>>> x = 1e15 
>>> x + 1 - x 
1.0 

# ... until it doesn 't! 
>>> x = 1e16 
>>> x + 1 - x 
0.0 

(a) Example of “catastrophic cancellation” in Python. 

(b) Average “bits” (log2 (ulps)) of foating-point error with respect 
to � when evaluating the quadratic equation over randomly-
sampled inputs. For many applications the error is unacceptable, 
but few programmers are equipped to address such numerical 
issues. 

Figure 1: Floating-point error is pernicious; even familiar, 
simple expressions can yield meaningless results. 

Fully understanding and fxing the bug in Rust required rewriting 
the naive defnition ���(�+���� (�2+1)) as ���1� (�+�/(ℎ���� (1, �)+ 
�)). To arrive at the solution, numerical analysts needed to repur-
pose internal operations of existing tools and apply their own expert 
knowledge. This example illustrates how experts must work 
with a constellation of complicated analysis tools, none of 
which answer their questions about an expression directly. 
Our goal is to enable numerical analysis experts and developers 
of mathematical libraries to fnd and fx similar bugs and prevent 
their occurence in the future. 

Towards this goal, we observed novices and experts in an in-
lab design study and found that users struggle with specifying 
their objectives and interpreting Herbie’s results, facing issues of 
tool/user objective mismatch, lack of trust in the automated tool, 
and a need for independent exploration. We also identifed a three-
stage foating-point rewriting workfow: (1) diagnosing problems, in 
which users identify the problematic operations within expressions; 
(2) generating solutions, in which users gather potential expression 
rewritings from automated tools, references, or their own creativ-
ity; and (3) tuning, where users test, tweak, and compare diferent 
rewritings to optimize the resulting expression for their own accu-
racy, performance, and maintainability needs. This workfow is not 
well-addressed by existing tools. For example, end-to-end tools like 

Herbie can take minutes to return a batch of analysis results, and 
there is no tool support for comparing and improving rewritings 
drawn from multiple sources. 

To support this workfow, we designed and implemented Odyssey, 
an interactive workbench that allows users to identify problem ar-
eas in foating-point expressions using error visualizations, collect 
and manage expression rewrites using an interactive table, and 
combine rewrites to minimize rounding error. Odyssey leverages 
Herbie as an analysis and rewriting engine but retains context about 
the user’s objectives, allowing it to return common analyses in less 
than a second. 

To evaluate the efectiveness of Odyssey, we conducted a study 
with fve experts in numerical computing and foating-point arith-
metic. On average, the experts successfully completed fve out of 
seven challenging tasks drawn from real-world numerical problems 
in roughly 40 minutes after a 12-minute tutorial. The interactive 
nature of Odyssey enabled experts to concentrate on high-level 
problem-solving and facilitated the swift evaluation and compari-
son of expression rewritings. 

Odyssey contributes to a growing body of work on expert tools. 
Unlike end-users, experts have highly specialized workfows and 
signifcant low-level implementation knowledge they need to ex-
press and incorporate in tools. Examples of expert tools include 
Roly-poly, a tool for guided optimization of Halide image process-
ing code [26]; PerformanceHat, a tool for analyzing application 
runtime performance [12]; and Tsugite, a tool for interactive design 
and fabrication of wood joints designed for expert machinists with 
limited experience working in a particular domain [32]. By combin-
ing the power of automated systems with a dynamic, human-driven 
workfow, Odyssey is an example of how to enable more users to 
work efciently along-side automated tools in complex domains 
beyond foating-point. 

This paper makes four contributions: 
(1) An investigation of the needs of novices and experts, summa-

rized in a three-stage workfow for foating-point expression 
rewriting: diagnosis, solution generation, and tuning. This 
workfow combines both automated tools and human rewrit-
ings. 

(2) An iteratively developed workbench, Odyssey, that supports 
this workfow. 

(3) A study of Odyssey’s efectiveness based on feedback from 
expert users who completed a set of challenging tasks drawn 
from real-world numerical problems. 

(4) A discussion of the implications of our work for the design of 
interactive expert tools that combine human and automated 
design space search. 

2 BACKGROUND AND RELATED WORK 
Odyssey draws on techniques from the developer tool literature on 
program visualization and program history to addresses key chal-
lenges developers face in the domain of foating-point arithmetic. 

2.1 Program Visualization for Debugging 
Floating-point error analysis and repair involves a mix of debugging 
and performance optimization work. Odyssey is thus inspired by 
work aimed at program visualization for debugging. Systems such 
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as Whyline [31], Timelapse [9], and FireCrystal [38], which connect 
code with runtime behavior by visualizing execution traces, inspire 
several of Odyssey’s interactions, including the interactive “local 
error” heatmap visualizing per-operation foating-point error for a 
particular input. Moreover, a series of papers on integrating visual-
izations with code, such as Theseus [34], which provides always-on 
visualizations of runtime state; Projection Boxes [33], which gives 
programmers more control over which runtime values are visual-
ized; and Hofswell et al. [24], which provides recommendations 
for embedding visualizations in code, are refected in our design 
of Odyssey’s error graph, which allows programmers to visualize 
foating-point error and control which input values and rewritings 
are visualized. Odyssey sees similar benefts from these designs as 
prior work: opening up space for programmer exploration and ob-
servation, and thereby giving programmers a fuller understanding 
of the problem space and a richer set of interactions for comparison 
and repair. 

That said, foating-point rounding error is a continuous, numeric 
quality of a program, and the “tuning” stage of numerical work 
therefore has a lot of analogs to performance optimization. Beck 
et al. [6] and PerformanceHat [12], for example, visualize the pro-
portion of runtime spent at each each line of code in the program. 
These approaches inspire our “heatmap” design for local error in-
formation, coloring each foating-point operation in the program 
based on the amount of foating-point rounding error it contributes 
to the result. The Roly-poly [26] project is also quite similar to 
Odyssey, aiding developers in exploring and selecting performance 
optimizations for image processing code. Odyssey explores a simi-
lar system-aided optimization workfow, but for accuracy instead 
of performance optimization. 

2.2 Maintaining and Reviewing Code Versions 
To understand, experiment with, and collaborate on code, develop-
ers author and compare multiple program alternatives and histo-
ries [13]. Tools such as Azurite [48], Verdant [29], and Variolite [28] 
provide explicit support for multiple program versions. For example, 
Verdant helps data scientists compare, replay, and simplify histories 
for code in computational notebooks [29]. Also, Head et al. [23] 
introduce “code gathering” techniques that fnd the minimal code 
slices in a program that produce a selected set of results. Comparing 
and combining multiple alternative rewritings is a also key part of 
foating-point error repair. 

Odyssey maintains a history of rewritings both to provide a his-
tory of how a rewriting was developed and also allow developers 
to visualize, compare, and combine multiple alternatives, provid-
ing explicit internal support to what would otherwise be internal 
mental operations, thereby reducing cognitive load and allowing 
developers to focus on the higher-level problem-solving aspects. 

2.3 Floating-Point Arithmetic and Numerical 
Analysis 

Floating-point arithmetic, defned by the IEEE 754 standard [25], 
and variations of this standard form the standard number repre-
sentation in most programming languages [37]. However, foating-
point arithmetic is subject to rounding error, and even elementary 

computations often permit signifcant error [19]. Numerical anal-
ysis provides a set of mathematical tools to analyze, bound, and 
reduce this error [22]. However, many programmers are unfamiliar 
with numerical analysis techniques, and even fewer have a thor-
ough understanding of how to apply these tools. 

Researchers have thus developed a vast menagerie of tools au-
tomating specifc numerical analysis techniques, including Rosa [15] 
for afne arithmetic, FPTaylor [43] for error Taylor series, and 
Ariadne [5] for root fnding. Other tools repurpose static analy-
sis techniques to fnd foating-point rounding errors; such tools 
include Fluctuat [20], which uses abstract interpretation; FPDe-
bug [7], which uses a dynamic execution with shadow variables; 
and CGRS [11], which uses evolutionary search. These tools can 
fnd inputs with high rounding error or, in some cases, certify the 
absence of such errors. Programmers can then use the error found 
to attempt to understand the source of the rounding error, and 
ultimately fx it. One popular tool combining these steps is Her-
bie [39]. Herbie uses sampling techniques to identify foating-point 
error; constructs candidate rewrites using algebraic and analytic 
identities, and tests those rewrites against higher-precision execu-
tions to identify the rewrite with the lowest foating-point error. 
In recent releases, Herbie can output multiple suggestions with 
diferent performance and accuracy characteristics [42]. 

Unfortunately, all of these tools, Herbie included, are difcult 
for developers to use and integrate into their workfows. Users are 
typically expected to identify the expression and inputs of interest 
up front; compare them to other sources or the user’s own ideas; 
and make trade-ofs between accuracy and other goals (e.g., main-
tainability), all without tool support. Users are often recommended 
to switch between their code editor, version control system, a math-
ematical visualization tool, and multiple Herbie instances in order 
to solve a single problem [30]. VSCode-PRECiSA [2], a VSCode 
interface for the PRECiSA command-line tool [45] designed to sup-
port the process of analyzing a single program in several ways, is 
somewhat of an exception; however, it does not address the prob-
lem of tool interoperation. We developed Odyssey to address these 
limitations by providing a single integrated workbench for the full 
foating-point rounding error workfow. To lower the barriers to 
adoption, Odyssey uses Herbie, a widely used and open source 
tool [30, 44], under the hood. 

2.4 Expert tools for design space search 
Odyssey is an expert tool for numerical analysts to re-write foat-
ing point expressions. Unlike tools for end-users, expert tools are 
designed for users with extensive design and implementation expe-
rience. Experts have honed specialized workfows, leverage insights 
to improve upon automated or semi-automated approaches, and 
are comfortable wading into low-level details. For example, ex-
pert developers optimize the performance of applications [12] and 
specialized pipelines. In the domain of high-performance image 
processing, Roly-Poly [26] is a system built on top of the Halide 
compiler [41] for expert engineers to explore trade-ofs and decide 
among possible optimizations. Odyssey is similar to Roly-Poly in 
that it supports interactive workfows with an automated tool to 
support expert users. In the statistical analysis domain, multiverse 
analysis tools such as Boba [35] and Multiverse Debugger [21] 
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Figure 2: Users enter a new expression. 

enable expert statistical analysts to assess the robustness and sensi-
tivity of analysis results. The intended users are experts in statisti-
cal analysis but not necessarily in multiverse authoring. Similarly, 
Tsugite helps expert fabrication users create new wood joints [32]. 
Odyssey adds to this growing body of research on expert tools for a 
new domain, and we discuss key insights that could serve as design 
principles generalizable across domains (section 8). 

3 USAGE SCENARIO 
Alex, a numerical analysis expert, has received a report that there is 
an issue in the asinh function of a popular programming language’s 
standard library.2 

Alex now needs to develop an accurate implementation of the 
asinh function. 

3.1 A Typical Debugging Process 
The asinh function is defned, for positive � , as asinh(�) = log(� +√ 
�2 + 1). Based on the report, Alex hypothesizes that the issue 

involves the high range of the function’s input. The �2 term will 
overfow for large � . 

They aren’t immediately sure how to fx this. They turn to a 
state-of-the-art automated tool, Herbie, for help. Alex runs Herbie 
on the asinh expression. Herbie suggests a replacement expression 
and shows an error plot for the original and fnal expressions. 

Alex wants to start rewriting, but now faces a series of obstacles. 
First, Herbie’s error plot suggests that there is another source of 

error in the expression—small inputs, between 0 and 1. Alex needs 
to diagnose the cause of this error by fnding a subexpression to 
rewrite. Alex sets up a REPL for the math library and manually 
steps through each subexpression. Alex considers its input and 
output ranges to see where errors occur. 

Second, Alex needs to generate new solutions and test them. Al-
though Herbie suggests a potential rewrite, it is still error-prone 
for small inputs. Drawing on their experience, Alex wants to try 
out new expressions, but Herbie does not support this. As a result, 

2As mentioned earlier, this issue is based on a real-world problem that a numerics 
expert recently found and addressed for the Rust standard library using Herbie [1] 

Alex abandons Herbie, writes a new expression, and sets up a new 
testing framework. Alex is frustrated that they have to fgure out 
how to set this testing up by themself, even though Herbie has 
internal tools that are capable of this. Future iterations will require 
Alex to start all over, discouraging them from exploring and fnding 
an expression with more desirable error characteristics. 

Third, Alex fnds two rewrites which fx adjacent parts of the 
domain, and now wants to join them. This requires tuning the 
constant used for picking the branching point. However, in Alex’s 
current test framework, the consequences of changing the constant 
are not evident. In other words, an iterative design process is not 
supported. 

In order to address the above issues, Alex spends hours stitching 
together workarounds. 

Alex needs an integrated tool designed for human-directed ex-
pression debugging and interactive rewriting. Odyssey is designed 
to help experts like Alex who fx foating-point bugs that impact 
the core of a programming language. 

3.2 Using Odyssey 
First Stage: Diagnosing Problems. Using Odyssey, Alex begins by 
typing the mathematical defnition, log(x + sqrt(x * x + 1)), 
into Odyssey’s expression entry box (see Figure 2), along with the 
range of possible x values. In this case, the defnition is only valid 
for positive � , so Alex enters 0 as the lower bound. Since this is a 
library function that can be executed on any input, Alex leaves the 
default upper bound of 10308 in place. The expression and initial 
input range are used to initialize Odyssey’s main screen (Figure 3) 
and appear in the top left corner of the screen (Figure 3A). If the 
user needs to launch multiple Odyssey sessions, this part of the 
screen will help them diferentiate them. 

Beneath the initial expression, Alex sees Odyssey’s rewritings 
table (Figure 3B). The rewritings table allows the user to collect 
multiple versions (or “rewritings”) of the expression and compare 
them for accuracy. Each rewriting in the table shows its average 
accuracy, and rewritings can also be selected or hidden to control 
the display of other information in Odyssey. Initially, the rewritings 
table contains a single rewriting, the direct implementation of their 
expression. In this example, the initial rewriting has quite high 
error (45.28 bits out of 64) indicating that there is quite some work 
left to do to produce an accurate implementation. 

To better understand the source of this error, Alex refers to the 
error plot (Figure 3C). This plot shows the error of every rewriting 
in the table. The horizontal axis shows diferent input values � 
spanning hundreds of orders of magnitude; the vertical axis shows 
error, with higher values being worse. In this example, three regions 
are clearly visible: inputs � < 1, with high error; inputs 1 < � < 
10150, with low error; and inputs 10150 < � , with high error again. 
Distinct regions like these often have distinct causes of error and 
are a starting point for exploring more deeply. 

To begin investigating, Alex clicks on one of the points in the 
error plot; this updates Herbie’s “local error heatmap” display (Fig-
ure 3D). Local error is an internal heuristic in Herbie that identifes 
which operations in a rewriting cause rounding error at a given 
point. By clicking on one point with 10150 < � , and another point 
with � < 1, Alex confrms that this expression has two distinct 
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Figure 3: Diagnosis. The specifcation (A) shows the expression the user is trying to implement. The rewritings table (B) shows 
the expressions the user has tried. The error plot (C) shows the error of the current expression. The local error heatmap graph 
(D) shows the error breakdown of the currently selected point. 

Figure 4: The Expression Details view shows a LaTeX render-
ing and plain text to help users understand and work with 
the selected expression. 

sources of error: for large inputs � , the source of error is the sqrt 
and * operations, while for small inputs � , the source of error is the 
log operation. After diagnosing the operations with error and the 
afected inputs, Alex begins generating solutions to these foating-
point rounding error problems. 

Second Stage: Generating Solutions. To start generating solutions 
quickly, Alex queries an automated tool using the “Get expressions 
with Herbie” button (Figure 5A). This automatically translates the 
expression into Herbie’s input format; invokes Herbie; evaluates 
the error of each of Herbie’s suggestions; and translates each one 
back to a human-readable format. 

In this case, invoking Herbie adds fve suggestions to the rewrit-
ings table and to the error plot (Figure 5C). Since each rewriting 
in the table lists its error, Alex sees immediately that Herbie’s sug-
gestions reduce the original 45.28 bits of error to as low as 0.02 bits 
of error. Moreover, each rewriting’s error is also graphed on the 
error plot, with diferent rewritings shown in diferent colors. Users 

can highlight the plot for an expression by clicking on its row in 
the table. For example, by clicking Herbie’s ffth suggestion, log(x 
+ hypot(1, x)), Alex sees that this expression avoids error for 
10150 < � but still has error for smaller values of � < 1. Multiple 
suggestions will probably need to be consulted, compared, and com-
bined to achieve Alex’s accuracy, performance, and maintainability 
goals. 

Herbie is not the only source of rewritings in Odyssey. In fact, 
human creativity is often needed to overcome roadblocks for auto-
mated tools, and rewritings may also be sourced from other tools, 
from papers, or from online references. Therefore, Odyssey allows 
Alex to add rewritings directly to the rewritings table using the 
edit box (Figure 5B). As they type, their expression is automatically 
rendered and an error estimate is provided, to help avoid typos and 
other low-level mistakes. As Alex works on this expression, the 
table of rewritings will grow to contain all of the various rewritings 
or ideas they have considered. By leaving this basic organizational 
task to Odyssey, Alex is able to focus on high-level reasoning. 

Third Stage: Tuning. After generating solutions to the various foating-
point issues in this expression, Alex wants to understand how these 
rewritings can be combined to produce a single implementation 
of the expression that satisfes their accuracy, performance, and 
maintainability goals (Figure 6). 

Since, in this case, many of the rewritings are generated by 
Herbie, they start by understanding those rewritings in greater 
depth. To do so, Alex clicks on one of these rewritings and looks 
at the derivation provided for it (Figure 6A). The derivation of a 
Herbie-generated rewriting shows the sequence of steps Herbie 
used to produce it. Alex scans one derivation that has caught their 
attention both for ideas that can be lifted and combined with a 
diferent rewriting, as well as for potentially dangerous steps. In 
this case, they spot that Herbie used a Taylor series expansion to 
derive one of the rewritings. Taylor series expansions are dangerous, 
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Figure 5: Solution generation. User can request rewritings from Herbie by pressing a button (A) or enter their own using the 
expression edit box (B), which provides live feedback and estimates the expression error on the current sample. The rewritings 
table and the error plot (C) are updated every time a rewriting is added, allowing the user to compare the quality of diferent 
rewritings. 

because they are often valid only for inputs in a certain range, 
and can lead to high error if used outside of that range. In this 
case, Herbie guarded the Taylor series with the conditional � ≤ 1; 
however, it may be possible to tune the condition further. 

To begin tuning this piece, Alex uses Odyssey’s range adjustment 
control (Figure 6C). Since the conditional has a threshold at 1, Alex 
enters a range of inputs near 1: 10−52 ≤ � ≤ 1012. When Alex 
updates the range, Odyssey samples a new set of inputs all chosen 
from the selected range, and the plot updates to show only the new 
set of inputs. Because these inputs are all clustered near 1, Alex can 
now examine error in this range at much higher resolution. Here, 
the higher resolution reveals what inputs around 1 have a spike in 
error. 

To fx this new-found problem, Alex continues to test new rewrit-
ings using the expression edit box. Since, at this point, Alex has 
already found many quite-accurate rewritings, they choose to mod-
ify an existing rewriting using the copy-to-clipboard button (Fig-
ure 6B). This allows Alex to easily make small adjustments, such 
as raising or lowering the threshold by rewriting the branch condi-
tion, and see how that afects the inputs they have focused on. Alex 
may not always tune expressions for accuracy; they might instead 
simplify rewritings to make them run faster, or make modifcations 
to improve readability and maintainability. In those cases, the error 

graph allows Alex to validate that error has not increased unaccept-
ably. Finally, Alex has tuned the expression to their liking, so they 
use the copy-to-clipboard button to copy the fnal expression and 
insert it into their program. 

Reviewing these steps, Alex used a three-step foating-point 
error improvement workfow: diagnosing the sources of foating-
point error; generating candidate solutions to these source of error; 
and then tuning and validating the resulting solution until it met 
their accuracy, performance, and maintainability goals. The entire 
process was orchestrated through Odyssey’s table of rewritings 
and error plot, which track the various rewritings Alex already 
considered and allow Alex to easily compare rewritings over the 
input range. Odyssey additionally provided convenient ways to 
leverage the automated error-improvement tool Herbie, including 
invoking Herbie, visualizing internal heuristics, and presenting 
derivations. Combined, these features allow Alex to focus on higher-
level concerns such as accuracy-improving rewrites and acceptable 
trade-ofs between their goals. 

4 ITERATIVE DESIGN PROCESS 
To understand how to meet the needs of Herbie’s users, after re-
viewing user-submitted bug reports, testing changes to the existing 
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Figure 6: Tuning. The user can use derivations (A) to help them understand Herbie-generated rewritings. Each expression can 
be copied using the copy button (B) for easy editing of existing rewritings. The user can use the input range editor (C) to “zoom 
in” on critical ranges—i.e., resample and reanalyze all expressions on a new range. Above, the user has tried rounding some of 
an expression’s constants after zooming. 

Herbie user interface, and mocking up a new interface, we con-
ducted an iterative user design study. As we observed users working 
with the prototype, we identifed new needs and added features to 
meet those needs. 

User Design Study with Prototype 
Our user design study consisted of nine interviews with participants 
ranging from foating-point novices to experts. Most participants 
were graduate students working on foating-point-related research 
with at least two years of experience. We spaced these interviews 
out and iteratively added features to Odyssey, responding to user 
concerns after each interview. We made the following observations. 

First, we found that more experienced users iteratively submit-
ted many hand-written programs to Odyssey. In some cases, users 
modifed a Herbie result, used Odyssey’s reported error to confrm 
that the change didn’t harm accuracy, and then used the modi-
fed program as a base for further modifcations. In other cases, 
users modifed a Herbie result and re-ran Herbie on the modifed 
expression, helping Herbie around a road-block of some kind and 
achieving a lower error as a result. We also saw users combining 
pieces of diferent programs into a single fnal program. Users de-
scribed implicit trade-ofs, for example noting that Herbie’s result 
was very complex, and that deleting certain terms from Herbie’s 
result was less accurate but easier to read. 

Second, we noticed that many participants, including both novices 
and experts, struggled to explain why there was error in an expres-
sion, even when they could see the error in Odyssey’s error plot. For√ 
example, in the program log(� + �2 + 1), most users could guess 
that the error for large � values was caused by overfow, but far 
fewer participants could identify that error for small � was caused 
by the log() operation. 

In a follow-up conversation with the Herbie developers, we 
learned that Herbie used a metric called “local error” to identify 
which operations were likely sources of error. We decided that 

exposing this metric to the user as a local error “heatmap” (see Fig-
ure 3D) could help users better understand foating-point error. 
Participants immediately began using per-point local error to ex-
plain why error occurred for specifc inputs to specifc programs. 
In this process, we also discovered that Herbie’s local error imple-
mentation had a subtle bug on specifc, rare inputs, leading to a 
patch. 

Finally, after initially removing derivations (see Figure 6A), we 
realized that they were an important foundation for users’ trust in 
Herbie’s results. For example, one participant was surprised when 
Herbie recommended the expression “1.0” as an “improved” version 
of some much more complex expression and became skeptical of 
all of Herbie’s other outputs, manually performing derivations to 
check that those expression had been computed correctly. Adding 
back support for derivations gave users more trust in Herbie’s 
suggestions. 

Through the user design study, we observed the following: 

◦ Experienced users follow an iterative process when rewriting 
expressions. 

◦ Rapid feedback during expression input helps users catch 
low-level mistakes. 

◦ Users need help understanding what part of the expression 
is causing error. 

◦ Users want justifcation and explanation for the steps of 
automated tools. 

5 EXPRESSION REWRITING WORKFLOW 
AND DESIGN OBJECTIVES 

Our design study led us to model foating-point error improve-
ment as a well-defned workfow consisting of three main stages: 
diagnosis, solution generation, and tuning. 

First Stage: Diagnosing Problems. In this stage, users identify prob-
lematic operations within expressions, determine which problems 
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Figure 7: The general workfow supported by Odyssey. Odyssey starts with a real-number specifcation, analyzes sources of 
error, creates diferent solutions based on the analysis, and tunes solutions based on user’s needs. 

are relevant to their objectives, and fnding starting points for fur-√ 
ther analysis. For instance, in an expression like log(� + �2 + 1), 
users must determine that the �2 operation overfows for large 
values of � , while the logarithm is inaccurate for small values of 
� . The user then decides whether large values of � are relevant in 
their environment. If so, they focus on avoiding the overfow in �2. 

We developed two principles to support diagnosis. First, users 
need ways to focus analysis on the parts of the input range and ex-
pression they care about investigating—without losing track of the 
broader analysis. Second, even experts need tools to help determine 
which operations cause error without relying on their expertise or 
resorting to trial-and-error operation replacement. 

Second Stage: Generating Solutions. In the second stage, users gather 
potential rewritings from a variety of sources. The objective is to 
create a pool of rewritings that the user can evaluate and combine 
to address the problems identifed in the frst stage. While existing 
tools, like Herbie, are a valuable source of ideas and potential rewrit-
ings, the user must still track and organize the outputs. Moreover, 
rewriting ideas may come from many other places: other automated 
tools, papers, online references, and even the user’s own creativity. 
Users need to collect the available rewritings, keep track of their 
origin, and organize them for easy evaluation. 

We developed three principles to support solution generation. 
First, there must be a central repository of rewritings drawn from 
multiple sources. The repository must also store source-specifc 
details, such as Herbie’s derivations. Second, since users themselves 
are a major source of ideas, manual input of rewritings must be 
supported, with instantaneous feedback to provide low-level error 
checking. This supports a tight feedback loop and eases iterative 
exploration. Third, where possible, it should be possible to use 
user inputs as starting points for additional automated exploration, 
allowing users to overcome roadblocks faced by automated tools. 

Third Stage: Tuning. In the third stage, users test, compare, and 
tweak rewritings to optimize for their accuracy, performance, and 
maintainability goals. Often the diagnosis and solution generation 
phases help users identify multiple independent problems and mul-
tiple independent rewritings that address them. Users must combine 
these rewritings to address error. This combination process is itself 
iterative. Users needing to validate that the combination did not 
introduce its own error. Moreover, the combination process might 
itself need tuning. Users may want to adjust the threshold at which 
they switch from one rewriting to another. Overall, this stage in-
volves iterative refnement and experimentation until the user is 
satisfed with the result. 

We developed two principles to support tuning. First, the user 
needs ways to compare rewritings for accuracy and get instanta-
neous feedback as they work. Second, users need explicit support 
for combining rewritings, whether directly using “if” conditions or 
indirectly by allowing the user to see multiple rewritings at once. 

The order of these stages is not fxed, and users may iterate 
between them, but we think these principles address explicit user 
needs during foating-point error improvement with an automated 
tool. 

6 IMPLEMENTATION 
Odyssey is implemented in two pieces: a “backend” that uses Herbie 
to dispatch numerical tasks, and a “frontend” implemented using 
web technologies to present an interactive workbench UI to the 
user. Odyssey can be used via a web browser or embedded into 
tools like Visual Studio Code. 

6.1 “Database Workbench” Architecture 
The key to supporting our design principles is Odyssey’s “database 
workbench” architecture. In this architecture, Odyssey stores a list 
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of rewritings that the user is exploring and makes calls to indepen-
dent analysis, visualization, and generation tools that run on the 
backend. This architecture stores all of the state on the frontend, 
allowing direct manipulation by the user. The automated analysis, 
visualization, and generation tools, meanwhile, are stateless, being 
invoked by Odyssey on whatever rewritings the user is currently 
considering. This architecture puts the user at the center at the 
center of the search. 

This architecture also leads to a natural separation of concerns 
between the frontend and backend. The Odyssey frontend imple-
ments all interactions, graphics, and manipulation actions. However, 
all numerical tasks (sampling, evaluating error, and generating ex-
pressions) are the responsibility of the backend. This ensures proper 
support for low-level operations like enumerating foating-point 
numbers and other numerical tasks that depend on the user’s tar-
get environment. While Odyssey currently only invokes Herbie 
subsystems, the backend is intended to invoke other tools as well. 

6.2 The Odyssey Frontend 
The Odyssey frontend provides a rewritings table and error plot 
to help users diagnose problems, generate solutions, and tune the 
results. 

The main state is stored in the rewritings table, shown in Fig-
ure 5. All rewritings the user is considering—including both those 
generated by Herbie and those entered by the user, are stored here. 
Each rewriting also shows its average error, for easy comparison. 
A checkbox allows the user to hide expressions from the error plot 
and other parts of the UI, which functions as a kind of “archiving” 
operation so that users can ignore sub-par rewritings without an 
irreversible deletion operation. Additionally, a clipboard button al-
lows users to copy rewritings, which is essential to users modifying 
or combining rewritings. None of these interactions involve the 
backend, and are thus instantly responsive to user action. 

The input box allows adding rewritings to the table using a 
natural mathematical syntax backed by a parser from the mathjs 
library [17]. Odyssey then converts that input both to an instantly-
updating LaTeX render (to help users catch mistakes and typos) 
and to the standard FPCore input format, which Herbie uses to 
represent rewritings. Herbie is then invoked to analyze the error of 
the new rewriting, which is then added to the plot. Additionally, 
rewritings can be added to the table by invoking Herbie to generate 
suggested rewritings; any rewritings suggested by Herbie are also 
converted from FPCore back to LaTeX and mathematical syntax so 
that the user does not have to understand FPCore in order to use 
Odyssey. 

The main visualization is a large error plot. This plot shows the 
error on all of the sampled inputs, for each of the rewritings in the 
rewritings table, with colors helping users match each rewriting 
to its error plot. Because rewritings often have identical error over 
some range the user can click on a rewriting in the table to highlight 
it in the error plot; users can also use checkboxes in the table to 
hide expressions from the error plot. By hovering over each point 
in the error plot, the user can see the exact sampled input, and by 
clicking on a point, they can update parts of the UI (such as the 
local error heatmap) to focus on that specifc input. The user can 
also adjust the input domain using an input range selector below 

the plot. Changing the input domain causes Odyssey to resample 
inputs, evaluate each rewriting on the new inputs, and redraw the 
error plot using the newly-evaluated errors. Once again, besides 
adjusting the input range, all operations are instantaneous and do 
not invoke the backend. 

On its own, Odyssey does not provide any additional features. 
However, Odyssey is extensible, and tools invoked by the backend 
can ofer additional visualizations. To see these additional visualiza-
tions, the user selects a specifc rewrite, and the visualizations are 
shown beneath the main UI. Selecting the specifc rewriting means 
that diferent rewritings, which might come from diferent sources, 
can provide diferent kinds of justifcations or explanations. Our 
Herbie backend provides two such visualizations: the local error 
heatmap and derivations. When Odyssey is extended to support 
additional backend tools, we expect each tool to provide its own 
additional visualizations. 

6.3 The Herbie Backend 
Odyssey’s Herbie backend is used to sample inputs, evaluate the 
error of rewritings, and suggest new rewritings to the user. Herbie 
was originally designed as a batch-mode tool, so part of our work 
involved adding an HTTP API to expose various internal analysis 
functions so that they can be invoked by Odyssey. Luckily, the 
Herbie features that we wanted to expose, including input sam-
pling and error evaluation, were already independently-invocable 
functions in Herbie. 

A key challenge in the backend is dealing with latency. Herbie’s 
initial design as a batch-mode tool means that Herbie typically 
samples inputs, evaluates error, and suggests rewritings every time 
it is invoked, even though some of those steps (like sampling inputs) 
are slow while others (like evaluating error) are fast. To address 
this, Odyssey’s Herbie backend independently caches the outputs 
of each step (like the sampled inputs). This way, evaluating the 
error of an expression is done on cached sampled inputs and takes 
milliseconds instead of resampling the inputs, which would take 
seconds. 

Further, all of Odyssey’s invocations of the backend are asynchro-
nous, allowing the user to continue working while Herbie processes 
their requests. 

By keeping the latency of most operations under a second and 
ofering access to previously-inaccessible heuristics like local error 
(an internal search heuristic) and expression derivations (previously 
a debugging tool for Herbie developers), Odyssey’s “database work-
bench” architecture allows users to stay in the fow of their work 
as they solve rewriting problems. 

7 EXPERT EVALUATION 
The goal of the expert evaluation was to assess the efectiveness 
of Odyssey in supporting the three-stage workfow we identifed: 
diagnosing problems, generating solutions, and tuning expressions. 

7.1 Protocol 
We conducted an interview study with fve experts from the foating-
point community (see Table 1) to evaluate the efectiveness of 
Odyssey in supporting the three-stage workfow. We recruited the 
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Expert # Background: 
1 Industry, FP hardware + supercomputing (num-

ber systems for minimization problems), 45+ 
years. 

2 Professor, FP tools (mixed-precision conver-
sions and program analysis), 10+ years. 

3 Grad student, FP hardware (datapath optimiza-
tion), 5 years. 

4 Professor, verifcation (correctness analysis), 9 
years. 

5 Industry, FP hardware (interval analysis, tran-
scendental functions), 3 years. 

Table 1: Five experts from the foating-point community 
evaluated and suggested future directions for our work. 

experts via email through professional networks and communi-
ties (e.g., FPBench). Each expert had diferent levels of experience 
in academia and industry, ranging from 3 years to over 45 years, 
and their backgrounds covered various aspects of foating-point 
systems, including hardware design, verifcation, and optimization. 

Each interview session was conducted over Zoom, with experts 
operating the tool via remote control to avoid early issues we expe-
rienced with participants on networks with special confgurations. 
Interviews lasted between 60 and 90 minutes and consisted of three 
parts: 

• Introduction and tutorial. The frst author briefy introduced 
Odyssey and the problems it is designed to address. Then, 
each expert followed a hands-on tutorial demonstrating the 
usage of Odyssey on a simple example. 

• Seven tasks. Each expert completed seven tasks, each de-
signed for one of the three workfow stages and aimed at 
eliciting the experts’ reactions to diferent parts of Odyssey’s 
interface (Table 2). If the experts encountered difculties, the 
frst author provided guidance or reminded them of relevant 
interface features from the tutorial. 

• Exit survey and discussion. To conclude, each expert com-
pleted a survey (Table 3) and participated in a semi-structured 
interview with the frst author, where the experts refected 
on their experience with Odyssey and provided feedback 
on potential improvements and extensions. The frst author 
specifcally asked for experts’ opinions on the legitimacy of 
the workfow we aim to support, its relevance to their work, 
and the extent to which they felt Odyssey supported each 
part of the workfow. 

Throughout all three parts, the experts’ screens and audio were 
recorded. The frst author also took note of the experts’ comments, 
insights, and responses to the tasks and survey questions. All study 
materials are provided as supplemental material. 

7.2 Analysis and Results 
We conducted an iterative, thematic analysis of expert solutions 
and the frst author’s notes for each stage of the workfow. Below, 
we discuss the experts’ responses to the relevant tasks and survey 
items for each stage. Through this analysis, we aim to provide a 

qualitative evaluation of Odyssey’s efectiveness in supporting each 
part of the workfow. 

First Stage: Diagnosing Problems. Task 1 required experts to analyze 
the error in an inverse hyperbolic sine implementation and iden-
tify the parts of the expression causing errors, then decide which 
operation or operations needed to be rewritten in order for the 
rewriting to correctly handle large inputs. Among the fve experts, 
four successfully completed this task, relying on Odyssey’s error 
visualizations (see Figure 3). 

P2 explored multiple input ranges in order to identify the two 
problematic operations: 

“This is across the entire sample... so I wonder if it’s doing 
something diferent on this side [clicking a point with a 
small � value and looking at the local error graph] So 
there it’s all the log, and over there... [clicks a large � 
value] it’s all the square root. So that’s interesting, it’s 
actually coming from diferent operations.” 

Here, the error plot efectively surfaced the two areas of high error 
(small and large � values), giving the expert clear places to look 
for troublesome operations. Then, by switching between inputs in 
diferent regions, the expert was able to see that the problematic 
operation was diferent between these regions. 

In the survey (see item 3 in Table 3), all fve experts rated the 
interface’s ability to help identify or confrm specifc problems with 
expressions at a 7 out of 7. We attribute this success mainly to the 
error plot and local error heatmap, which implemented the second 
principle we identifed for a good diagnosis tool. They supported 
the user in assigning responsibility for error without relying on 
expertise or resorting to trial and error. As P2 concluded, 

“Having the graph and being able to click on the diferent 
places where error is high is defnitely nicer than just 
looking at output in a text fle.” 

Second Stage: Generating Solutions. We designed several tasks to 
evaluate Odyssey’s support for collecting and evaluating new ex-
pressions that address the identifed problems in foating-point ex-
pressions. Close to all experts who attempted each task succeeded 
(see Tasks 2 and 5 in Table 2). 

Task 2 required experts to analyze a troublesome subexpression 
from Task 1 and fnd a better rewriting for it. Then, experts needed 
to bring the solution back to the original analysis and decide if 
they were happy with it. Four of the fve experts who attempted 
Task 2 successfully completed it, showing that the interface facili-
tated the collection of solutions and their integration into existing 
expressions. Of those four, two experts found their own unique 
approaches to solving the problem identifed in Task 1 rather than 
relying on an automated solution. One expert pulled a factor of � 
out of the square root, and another expert created a branch that 
switched to an approximation for large values of � . Both of these 
approaches showed low error on the error plot, though the experts 
noted there could be issues with these choices (for example, branch-
ing impacts performance, and dividing by � is risky when � could 
be 0). This showcases the fexibility of Odyssey in allowing users 
to explore alternative solutions and evaluate their impact on the 
error plot. (The expert who did not complete Task 2 was our frst 
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Task Description√ Targeted part of workfow Success rate 
1 ���(� + � · � + 1) is an expression for 

the inverse hyperbolic sine. Identify the 
parts of the expression causing errors 
for large/small � . 

Diagnose troublesome subexpressions and prob-
lematic ranges. 

4/5 

2 Use Odyssey to fnd a solution for the 
troublesome square root subexpression 
from task 1. 

Generate solutions for the subexpression and 
use these to optimize original expression. 

4/4 

3 Is your solution to task 2 good enough? Use visualizations to form evaluation criteria 
for ending analysis. 

4/4 

4 Identify problems with branch expres-
sions in fully automated solutions for 
task 1. 

Explain important features of expressions and 
diagnose issues. 

3/4 

5 Use Odyssey to fnd and recommend 
log1p to solve small � . 

Nudge an automated tool past roadblocks to 
generate better solutions. 

2/3 

6 Evaluate whether the full solution for 
the expression after tasks 1-5 is trust-
worthy. 

Use Odyssey’s feedback on expressions and in-
formation about expression soundness to eval-
uate expressions’ trustworthiness and ftness 
based on personal standards. 

2/2 

7 Use branch conditions to outperform 
a fully automated rewriting for the ex-
pression (��� (�) − 2) + ��� (−�). 

Mix solutions from diferent sources and tune 
branch conditions to create stronger solutions. 

3/4 

Table 2: Experts worked through up to seven tasks to exercise the features of Odyssey before a survey-based discussion. Due to 
time constraints, not all experts completed all tasks. 

participant, with whom we lost much of the interview time due to 
the networking issues mentioned earlier.) 

Similarly, Task 5 asked experts to fnd a more accurate rewriting 
for a subexpression applicable to small values of � . Three out of the 
four experts successfully completed this task, further supporting 
the efectiveness of Odyssey in assisting experts in gathering and 
evaluating potential solutions. 

P3 had the following to say about working through the process 
up to Task 5: 

“It feels like quite a natural way you might approach 
this problem as a human. You’re burrowing down into 
it more precisely and pushing your error around a little 
bit. I thought the transition of ‘we’ve moved the error 
from the log into the subtract [using log1p], now I know 
how to deal with the error in a subtract as well’ felt 
natural, ... since ... once we fgure out it was going to be 
the subtract that was giving us trouble, then [we can 
use Herbie to rewrite successfully]. It gets there much 
faster, but it’s cool that I also feel that I would have 
thought about going in a similar direction.” 

In the survey, experts rated the interface’s ability to generate 
ideas for solving specifc problems (item 4) with scores ranging 
from 5 to 7, with an average of 5.8. The interface’s efectiveness in 
evaluating the quality of ideas quickly (item 5) was rated between 5 
and 7, with an average of 6.4. These relatively high ratings indicate 
that the experts found Odyssey helpful in generating and evaluating 
ideas for improving foating-point expressions. 

Users were able to use Odyssey to successfully generate a variety 
of valid nontrivial new expressions for analysis, both using an 

automated tool (e.g. the way we expected users to solve Task 2) and 
by themselves (P5 and P4). This was signifcantly diferent from our 
experience in the earliest parts of the design process. The ability 
to send rewrites back to Herbie was a vital part of the solution 
generation process for the three experts who were able to complete 
Task 5. 

Third Stage: Tuning. The third stage of our proposed workfow in-
volves tuning expressions to further optimize their accuracy and 
performance. To assess Odyssey’s support for this stage, we evalu-
ated Task 7, as well as survey items 6 and 7, which inquired about 
the interface’s support for comparing and mixing diferent expres-
sions. 

Task 7 challenged experts to create a more accurate expression 
than Herbie’s best alternative for a given expression by combin-
ing diferent solutions and fne-tuning the branch point. The task 
demonstrated that a human can use Odyssey to outperform Herbie’s 
internal heuristics when unique requirements call for a tailored 
approach. After using the range zoom feature and noticing Herbie’s 
solution was still outperforming their solution on a small region, 
P2 remarked, “So in this view, we can see that we don’t have quite 
the right number [for the branch point].” The expert then adjusted 
the branch point based on the visual feedback. 

In the survey, experts rated the interface’s capacity to help them 
mix expressions from diferent sources (item 7) with scores ranging 
from 4 to 7, with an average of 5.4. The interface’s support for com-
paring diferent expressions (item 6) was rated even more highly, 
at an average of 6.4 (range from 6 to 7). 

As we can see in the example above, the especially high rating 
for comparison was likely a result of combining the ability to plot 
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# Survey Questions: Results: Average: 
1 "The workfow made sense to me and I was able to follow it." 5, 5, 6, 7, 7 6/7 

2 "This workfow matches my experience approaching real numerical analysis problems." 4, 6, 6, 6, 6 5.6/7 

3 "The interface helped me identify or confrm specifc problems with expressions." 7, 7, 7, 7, 7 7/7 

4 "The interface allowed me to generate ideas for solving a specifc problem." 5, 5, 6, 6, 7 5.8/7 

5 "The interface let me evaluate the quality of ideas for rewritings quickly." 5, 6, 7, 7, 7 6.4/7 

6 "It was easy to compare expressions in the interface." 6, 6, 6, 7, 7 6.4/7 

7 "It was easy to mix together expressions from diferent sources in the interface." 4, 5, 5, 6, 7 5.4/7 

8 "The interface let me focus on thinking about the problem at a high level." 5, 6, 7, 7, 7 6.4/7 

9 "I can think of ways to extend this workfow + interface to address numerical analysis problems 
that I have worked on." 

5, 6, 7, 7, 7 6.4/7 

Table 3: After completing the seven tasks, experts were asked to evaluate diferent aspects of the tool on a scale of 1 to 7. 

the error for diferent expressions together with zooming to focus 
on getting feedback on specifc regions. A couple experts (P4, P5) 
mentioned wanting more support for combining expressions, espe-
cially around conditional branches. P4 explained that an automated 
tool might be able to add guard conditions where appropriate. 

Finally, the experts appreciated the potential power of mixing 
human and automated solutions, with P3 commenting that sug-
gesting log1p and hypot to Herbie felt similar to proof assistant 
tools where “if you just add in an additional step on the way or an 
additional lemma... then it can actually nudge it over that threshold.” 

In summary, the results from Task 7, along with the survey re-
sponses for items 6 and 7, provide evidence that Odyssey efectively 
supports tuning expressions for optimal accuracy and performance. 
The interface enables users to mix expressions and adjust coef-
cients while ofering real-time feedback, streamlining the tuning 
process and enhancing the overall quality of foating-point expres-
sions. 

8 DISCUSSION 
As the frst expression rewriting workbench for the numerics com-
munity, Odyssey demonstrates how to build useful expert tools that 
enable users to more efectively search a design space. Below, we 
discuss three insights that were key to Odyssey’s design. These 
insights serve as design principles that generalize to expert tools in 
other domains where users want to navigate a design space. 

Expose heuristics, not states. First, we found that exposing the 
internal exploration-focusing heuristics of the tool, rather than 
just the search states—for Herbie, mainly the local error—helped 
users signifcantly, beyond its use in Herbie alone. By connecting 
this heuristic to other simpler metrics (like the input error plot), 
users developed explanations of the heuristic’s value that helped 
them understand what was relevant about the search state—for 
expression search, what subexpression was probably causing the 
error. By comparing the heuristic and their explanation across 
expressions, users could check if the issue was solved, even if the 
expression shape was too complicated for an automated tool to 
recognize. 

Give access to intermediate representations. Second, we found that 
giving the user ownership over intermediate parts of the search 
made the tool much more useful. Doing so even allowed us to 
catch a bug in the underlying tool. A widely held belief among 
the HCI community is that higher levels of abstraction are more 
desirable for end-users. Therefore, in an automated expert tool, it 
can seem natural to hide the middle of a search from the user to 
keep them working at a high level. However, in our study, we found 
that users wanted to be able to see and control the search process. 
Experts were particularly eager to introduce their own ideas and test 
assumptions. In Odyssey, without building any separate tooling 
except for a table that tracks candidates and synchronizes with 
visualizations of existing automated analyses, users are able to 
explore a much broader space of possible solutions in a way that 
was not possible with the original tool, simply by letting a human 
manage search candidates. 

Test expert workfows with relative novices. Finally, we were able 
to identify the appropriate level of abstraction in Odyssey because 
of our own iterative design process that involved novices and ex-
perts. Involving novices sensitized us to the foundational cognitive 
burdens experts had developed workarounds for. We realized that if 
our tool could not help a novice at least understand basic issues, it 
was likely too opaque for experts to use productively. The local error 
plot, a key feature we would not have included without involving 
novices, ended up being the most praised feature by experts. 

Applications to other domains with user-driven design space search. 
While this paper focuses on foating-point analysis, the above key in-
sights and fndings suggest generalizable principles for user-driven 
design space search. The tool wrapped by Odyssey, Herbie, works 
in a way that should be familiar to anyone who has worked with 
a design space exploration tool or classical AI search: it identifes 
a troublesome part of an expression, applies algebraic rewrites or 
approximations to that part of the expression to obtain new expres-
sions, tests those expressions to see if they are worth exploring, 
and fnally merges the best options. 

The shape of this process matches the workfow we describe 
for an analyst identifying and solving problems with an expres-
sion step-by-step while tracking possible rewriting directions. This 
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search shape is used in tools across many domains, including in au-
tomated theorem provers, carpentry compilers, machining systems, 
and ASIC design space exploration tools. Yet, expert tools in these 
domains do not apply the above three principles. As a result, the 
tools remain difcult to use and error-prone. We hypothesize that 
applying the principles will improve expert tools in other domains 
where users search a design space. 

8.1 Limitations and Future Work 
A major limitation of our design process was the tight design loop 
we had to maintain during development. While this was necessary 
to ensure we were building a system that would be useful to users, 
this meant we had to compromise on the polish of some features and 
altogether avoid others which would take too long to implement 
or require disturbing many parts of the interface. With more time, 
we plan to further improve the interface’s layout and provide more 
structured expression editing support. 

Of course, the main future work we have planned is to extend 
Odyssey to incorporate more analyses and sources of rewritings, 
including ideas like operation cost analyses and hardware-specifc 
rewrites that were mentioned by the experts in our study. Tools like 
PRECiSA [45] that already have an HTML-based analysis interface 
may be a good starting point for testing these integrations. 

Floating-point experts were very appreciative of our work, and 
saw a variety of ways it could be extended to further support their 
particular areas of expertise. These included ideas like adding sup-
port for multi-precision rewritings, incorporating operation cost 
analyses from Herbie and other tools, adding ways of helping hu-
man users simultaneously optimize at least 3 variables, and increas-
ing support for splitting expressions into subregions and subex-
pressions based on domain-specifc heuristics. 

Odyssey also has clear potential application in foating-point 
education. Several of our tasks asked users to explain to the inter-
viewer potential problems with an expression using the interface, 
and both the experts and the novices in our formative study were 
able to point out areas of high error, select points, and zoom in to 
get a better look at problem regions to support diagnostic claims. 
Odyssey has the potential to thrive in a classroom setting; it could be 
used by an instructor to show of how expression rewriting makes 
expressions more accurate or by students to explore and diagnose 
error sources an expression and try fxing them. We plan to try 
applying Odyssey in an undergraduate class covering foating-point 
representations soon. 

We are also excited by the explanatory potential ofered by the 
incorporation of large language models (LLMs) like GPT. We have 
found that available language models can, in fact, ofer rewritings 
and generate plausible explanations for users, but they are prone 
to “hallucinating” and incorporating nonsensical logic, so their 
output must be validated before it is used. With access to Odyssey’s 
calculation and validation tools, an LLM might be able to avoid 
these issues. 

Finally, a major possible extension was brought up independently 
by two diferent participants, who commented that they would be 
very interested in plugging in additional visualizations showing 
actual output efects of errors for each expression. For example, one 
participant has worked with expressions representing ellipses, and 

wanted to see how diferent kinds of error could lead to distortion 
of the ellipses. Allowing for additional visualizations would be a 
major possible improvement, since it will help users understand 
whether the error they see on the error plot matters when code is 
compiled and run in practice. If (as with ellipses) the output space 
can be mapped back to specifc input values, combining output 
visualization with the error graph heatmap will let experts relate 
points with noticeable error in the actual output to the particular 
mathematical operation causing that error. 

Overall, we are excited to see what foating-point experts and 
novices end up doing with Odyssey and look forward to improving 
our support for their work in the future. 
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A SUPPLEMENTAL MATERIAL 

A.1 Expert Study 
Below, we describe the procedure for our expert study of Odyssey. 

A.1.1 Introduction and Background (8 min). Our process began 
with an introduction and background session. This phase involved 
introductions followed by a set of background questions aimed at 
understanding the participant’s experience and usage habits around 
numerical analysis tools. We asked about the participant’s years of 
experience, when they last analysed the error of a foating-point 
expression, their typical workfow for analysing high foating-point 
error expressions, and their familiarity with the Herbie tool. If the 
participant was not a user of Herbie, we sought to understand their 
reasons for not using it and asked if there were ways they imagined 
Herbie ftting into their workfow. 

A.1.2 Tutorial (12 min). Following the introductory phase, we gave 
the participant access to the Odyssey interface via Zoom and con-
ducted a twelve-minute tutorial to familiarize them with the Herbie 
interface. The tutorial demonstrated several features using the ex-√ √
pression � + 1 − � for positive � . The features covered included 
the specifcation of the expression being rewritten and ranges over 
which it must be accurate, reading the error plots, local error identi-
fcation, selecting expressions from the rewriting table, expression 
editing, opening a new expression in a diferent tab, and resam-
pling on a diferent range. Throughout this tutorial, we encouraged 
participants to think out loud and provide feedback, emphasizing 
our interest in continuous interface improvement. 

A.1.3 Tasks (30-55 min). The next phase of our process was a task-
oriented session whose length depended on participant skill and 
availability. The tasks were designed to exercise diferent parts of 
the interface and to reveal insights about the participants’ under-
standing and ability to apply Odyssey for expression rewriting. The 
tasks covered identifying sources of error in specifc mathemati-
cal expressions, using the Odyssey system to fnd and recommend 
improvements, evaluating the efectiveness of proposed solutions, 
and identifying problems in automated solutions. For each task, 
specifc goals were set ahead of time in terms of interface usage and 
problem-solving approach so we could decide if Odyssey was able 
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to meet the participant’s need and whether their usage represented 
a novel approach. Here is the full list of tasks and usage goals: 

(1) Identify relevant sources of error in the Rust ����ℎ 
implementation. 
• The participant should be able to determine the cause of 
the error by clicking on two diferent points to see at least 
two local error graphs. 

(2) Use Odyssey to fnd and recommend ℎ���� . 
• The participant should submit ���� (� ∗ � + 1) in a new 
tab, ask Herbie for rewritings, and obtain ℎ���� (1, �) or 
another solution. 

(3) Determine whether the solution to task 2 is good enough. 
• The participant should be able to integrate the result from 
task 2 into the original expression and refer to the error 
plot to justify their answer. 

(4) Identify problems with branches (regimes) in auto-
mated solutions. 
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• The participant should be able to highlight areas of con-
cern by clicking on points around 1, where higher error is 
shown. 

(5) Use Odyssey to fnd and recommend a way of solving 
small � with ���1�. 
• The participant should be able to fnd a good solution for 
the entire range of positive � values that doesn’t include 
branches using Herbie’s suggestions. 

(6) Determine trust in the expression. 
• The participant should be able to verify the expression’s 
equivalence to the original by checking the expression 
derivation. 

(7) Use Odyssey to create a branched solution. 
• The participant should be able to create a branched ex-
pression that outperforms Herbie’s solution. 

A.1.4 Survey and discussion (10-15 min). In the fnal phase, we 
conducted a Google Forms survey that lasted between 10 to 15 
minutes. The survey questions and results can be found in Table 3. 
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