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relational queries only 

involving joins

e.g., Q(a, c) :- R(a, b), S(b, c)

Relational e-matching

e-graphs relational databases

e-matching conjunctive queries
⊆
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● Relational e-matching
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E-graphs are everywhere!
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E-graphs are everywhere!
Program optimization

● Known as “equality 
saturation”.

● Keeping many equivalent 
programs in a single 
e-graph.

● Non-destructive rewriting 
until fixpoint or timeout.

SMT solver

● Solving theory of equality 
with uninterpreted 
functions.

● Combining theories 
(Nelson-Oppen procedure)
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E-graphs

● An e-graph represents a set of terms 
and a congruence relation ≅ 
efficiently.

● E-class cf represents f(1, g(1)), f(1, g(2)), 
f(2, g(1)), …
○ All equivalent with each other.
○ Exponentially many terms!
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● An e-graph represents a set of terms 
and a congruence relation ≅ 
efficiently.

● E-class cf represents f(1, g(1)), f(1, g(2)), 
f(2, g(1)), …
○ All equivalent to each other.

● Exponentially many terms!

E-graphs

15

https://app.diagrams.net/?page=Page&scale=auto#G1rAHFdtUOC5pwfStRGvIRhmL8r7ovVrNQTRXEpag4BvA
https://app.diagrams.net/?page-id=Sdr3cvBIpXlINCJNsRdY&scale=auto#G1fZtByQkqOzEH-4C6jaiZB1n1h51VUf2Q


● An e-graph represents a set of terms 
and a congruence relation ≅ 
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E-matching
● E-matching: pattern matching over an e-graph.
● More formally: e-matching finds substitutions from 

variables to e-classes such that the substituted terms 
are represented by the e-graph.

f(α, g(α)) will match 

f(1, g(1))
f(2, g(2))

…
f(N, g(N))

, witnessed by              .

{α ↦ 1}
{α ↦ 2}

…
{α ↦ N}

f(1, α)   will match 
f(1, g(1))
f(1, g(2))

…
f(1, g(N))

, witnessed by  {α ↦ cg}.
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E-matching
● E-matching: pattern matching over an e-graph.
● More formally: e-matching finds substitutions from 

variables to e-classes such that the substituted terms 
are represented by the e-graph.

● NP complete w.r.t. the pattern and the e-graph size.
● Responsible for 60–90% of the run time in equality 

saturation.
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E-matching
● E-matching: pattern matching over an e-graph.
● More formally: e-matching finds substitutions from 

variables to e-classes such that the substituted terms 
are represented by the e-graph.

● NP complete w.r.t. the pattern size.
● Responsible for 60–90% of the run time in equality 

saturation.

Bottl
eneck

!
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Existing e-matching algorithms
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for e-class c in e-graph E:

Existing e-matching algorithms
f(α, g(α))

Ba
ck
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ac
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 s
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f(α
, g

(α
)) 
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for e-class c in e-graph E:
  for f-node n1 in c:

Existing e-matching algorithms
f(α, g(α)) f(1,cg )

f(2,cg )

…
f(N,cg )Ba

ck
tr

ac
ki

ng
 s

ea
rc

h 
f(α

, g
(α

)) 

23



for e-class c in e-graph E:
  for f-node n1 in c:
    subst = {root ↦ c, α ↦ n1.child1}

Existing e-matching algorithms
f(α, g(α)) f(1,cg )

f(2,cg )

…
f(N,cg )Ba
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ki
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(α

)) 

24



for e-class c in e-graph E:
  for f-node n1 in c:
    subst = {root ↦ c, α ↦ n1.child1}
    for g-node n2 in n1.child2:

Existing e-matching algorithms
f(α, g(α)) f(1,cg )

f(2,cg )

…
f(N,cg )

g(1)
g(2)
…

g(N)
g(1)
g(2)
…

g(N)
…

g(1)
g(2)
…

g(N)
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for e-class c in e-graph E:
  for f-node n1 in c:
    subst = {root ↦ c, α ↦ n1.child1}
    for g-node n2 in n1.child2:
        if subst[α] = n2.child1:

Existing e-matching algorithms
f(α, g(α)) f(1,cg )

f(2,cg )

…
f(N,cg )

g(1)
g(2)
…

g(N)
g(1)
g(2)
…

g(N)
…

g(1)
g(2)
…

g(N)

✓

🗙

🗙
🗙
✓

🗙

🗙
🗙

✓
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ck
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ki
ng
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ea
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h 

f(α
, g

(α
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for e-class c in e-graph E:
  for f-node n1 in c:
    subst = {root ↦ c, α ↦ n1.child1}
    for g-node n2 in n1.child2:
        if subst[α] = n2.child1:
            yield subst

Existing e-matching algorithms
f(α, g(α)) f(1,cg )

f(2,cg )

…
f(N,cg )

g(1)
g(2)
…

g(N)
g(1)
g(2)
…

g(N)
…

g(1)
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✓

🗙

🗙
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🗙

🗙
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Existing e-matching algorithms
f(α, g(α)) f(1,cg )

f(2,cg )

…
f(N,cg )

g(1)
g(2)
…

g(N)
g(1)
g(2)
…

g(N)
…

g(1)
g(2)
…

g(N)

✓

🗙

🗙
🗙
✓

🗙

🗙
🗙

✓

Ba
ck

tr
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ng
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ea
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f(α
, g

(α
)) 

O(N2)!
Yet at most 
O(N) matches

for e-class c in e-graph E:
  for f-node n1 in c:
    subst = {root ↦ c, α ↦ n1.child1}
    for g-node n2 in n1.child2:
        if subst[α] = n2.child1:
            yield subst
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Existing e-matching algorithms

● Relies on naive backtracking.
● Uses several ad hoc 

optimizations for specific 
patterns.

● No data complexity bound.

f(1,cg )

f(2,cg )

…
f(N,cg )

g(1)
g(2)
…

g(N)
g(1)
g(2)
…

g(N)
…

g(1)
g(2)
…

g(N)

✓

🗙

🗙
🗙
✓

🗙

🗙
🗙

✓
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f(α
, g

(α
)) 
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Overview
● Background
● Relational e-matching
● Evaluation and future work
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f(α, g(α))
g(f(α, α))

…

Relational e-matching
● Takes an e-graph and a list of 

patterns.
● Transforms the e-graph to a 

relational database.
● Compiles all e-matching 

patterns to conjunctive 
queries.

● Run the conjunctive query on 
the relational database!

Q(root, α) ← 
Rf(root, α, x), Rg(x, α)

Q(root, α) ← 
Rg(root, x), Rf(x, α, α)

…

id arg1 arg2

cf
1 cg

cf 2 cg

… … …

cf N cg

id arg1

cg 1

cg 2

… …

cg N

Rf

Rg

Ri=1…N 

id

i
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Observations
E-matching

Finding substitutions 
such that the substituted 
terms are present in the 
e-graph.

Conjunctive queries

Finding substitutions 
such that the substituted 
atoms are present in the 
relational database.

🤝
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f(α, g(α))
g(f(α, α))

…

Relational e-matching workflow

Q(root, α) ← Rf (root, α, x), Rg(x, α)
Q(root, α) ← Rg(root, x), Rf (x, α, α)

…

id arg1 arg2

cf
1 cg

cf 2 cg

… … …

cf N cg

id arg1

cg 1

cg 2

… …

cg N

Rf

Rg

Ri=1…N 
id

i

well suited for 

equality saturation
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Relational e-matching
● Takes an e-graph and a list of patterns.
● Transforms the e-graph to a relational database.
● Compiles all e-matching patterns to conjunctive 

queries.
● Run the conjunctive query on the relational database!

well suited for equality saturation
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E-graphs are relational databases

id arg1 arg2

cf 1 cg

cf 2 cg

… … …

cf N cg

id arg1

cg 1
cg 2
… …
cg N

Rf

Rg

Ri=1…N 
id

i
35
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E-graphs are relational databases

id arg1 arg2

cf 1 cg

cf 2 cg

… … …

cf N cg

id arg1

cg 1
cg 2
… …
cg N

Rf

Rg

Ri=1…N 
id

i
36
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E-matching is conjunctive queries

f(α, g(α)) Q(root, α) ← 
Rf (root, α, x), Rg(x, α)

ind = {}
for (x, α) in Rg: # build index
  ind.insert((x, α))

Rg(cg , 1)
Rg(cg , 2)

…
Rg(cg , N)

bu
ild

 h
as

h
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E-matching is conjunctive queries

f(α, g(α)) Q(root, α) ← 
Rf (root, α, x), Rg(x, α)

ind = {}
for (x, α) in Rg: # build index
  ind.insert((x, α))
for (root, α, x) in Rf: # probe
  if (α, x) in ind:
    yield {root ↦ root, α ↦ α}

Rg(cg , 1)
Rg(cg , 2)

…
Rg(cg , N)

Rf(cf , 1, cf )
Rf(cf , 2, cf )

…
Rf(cf , N, cf )

bu
ild

 h
as

h

pr
ob

e

✓

✓

✓

O(N2) O(N)
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Why is relational e-matching faster?
f(α, g(α))

Enumerate all terms of the 
shape f(α, g(β)) and check if  α = β  
only before yielding.

Q(root, α) ←
 Rf (root, α, x), Rg(x, α)

Build indices on both α and x, 
and only enumerate terms 
where constraints on both
x and α are satisfied.

equality 
constraints

structural 
constraints
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E-matching is conjunctive queries
f(α, g(α)) Q(root, α) ← 

Rf (root, α, x), Rg(x, α)

ind = {}
for (id, arg1) in Rg: # build index
  ind.insert((id, arg1))
for (id, arg1, arg2) in Rf: # probe
  if (arg2, arg1) in ind:
    yield {root ↦ id, α ↦ arg2}

Rg(cg , 1)
Rg(cg , 2)

…
Rg(cg , N)

Rf(cf , 1, cf )
Rf(cf , 2, cf )

…
Rf(cf , N, cf )

bu
ild

 h
as

h

pr
ob

e

✓

✓

✓

f(1,cg )

…
f(N,cg )

g(1)
…

g(N)
…

g(1)
…

g(N)

✓

🗙

🗙

✓

Ba
ck

tr
ac

ki
ng

 s
ea

rc
h

for e-class c in e-graph E:
  for f-node n1 in c:
    subst = {root ↦ c, α ↦ n1.child1}
    for g-node n2 in n1.child2:
        if subst[α] = n2.child1:
            yield subst
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Comparison to traditional e-matching

✖ Exploits structural 
constraints only.

✖ Top-down backtracking 
search only.

✖ No theoretical guarantee.

Traditional e-matching

✓ Exploits both structural 
constraints and equality 
constraints.

✓ Top-down, bottom-up, 
middle-out, etc. depending on 
the query optimizer.

✓ Achieves optimality by 
adapting results from database 
research.

Relational e-matching
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Comparison to traditional e-matching

✖ Exploits structural 
constraints only.

✖ Top-down backtracking 
search only.

✖ No theoretical guarantee.

Traditional e-matching

✓ Exploits both structural 
constraints and equality 
constraints.

✓ Top-down, bottom-up, 
middle-out, etc. depending on 
the query optimizer.

● E.g., e-matching f(g(h(x))) on 
e-graphs with only one 
h-node.

Relational e-matching
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Comparison to traditional e-matching

✖ Exploits structural 
constraints only.

✖ Top-down backtracking 
search only.

✖ No theoretical guarantee.

Traditional e-matching

✓ Exploits both structural 
constraints and equality 
constraints.

✓ Top-down, bottom-up, 
middle-out, etc. depending on 
the query optimizer.

✓ Achieves optimality by 
adapting results from database 
research.

Relational e-matching
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Data complexity results
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● Run time = max output size an e-graph with the same 
size could achieve.

● Application of database research on worst-case optimal 
join (WCOJ) algorithm.
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● A more involved theorem; use the structure of the 
compiled conjunctive query in the proof.

● Run time = function of e-graph size and actual output 
size.
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Overview
● Background
● Relational e-matching
● Evaluation and discussions
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Evaluations
● Uses two largest test suites of egg, a state-of-the-art 

e-graph framework.
● Baseline: egg’s e-matching procedure.
● Uses generic join for solving conjunctive query.
● Run twice once with index building and once without.
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Evaluations 6 orders of 
magnitude speedup

Index building takes 
time

Similar performance 
on linear patterns.

Speedup for specific 
linear patterns
((+ a (* -1 b))
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Multi-patterns
● Multi-patterns: list of patterns 

(p1, …, pn) to be matched 
simultaneously.

● Studied in literature & used by 
practical applications.

● Relational e-matching supports 
multi-patterns for free!

(f(α, β), f(β, γ))

Q(r1, r2, α, β, γ) :- 
Rf (r1, α, β), Rf (r2, β, γ)
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Functional dependencies (FDs) in e-graph
● FD: Dependencies between attributes.
● “Every e-node uniquely identifies an e-class it belongs 

to” translates to FD in the relational representation.
● FD allows us to derive even tighter bound.

○ f(g(α), h(α)) translates to Q(r, α) :- Rf(r, x, y), Rg(x, α), Rh(y, α), which 
has a worst-case complexity of O(N2/3);

○ FD tells us α uniquely determines g(α) and h(α), and therefore 
f(g(α), h(α)); simply enumerating α gives an O(N) bound.
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● Incremental e-matching = Incremental View 
Maintenance (IVM) in database.

● More join algorithms & more optimizations.
● Building on existing database management systems 

(DBMS).
○ We built a proof-of-concept prototype with sqlite!
○ Persistence, scalability, concurrency, …

Future work

Thank you!
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Takeaways
● Relational e-matching is simpler, faster, and optimal.
● Traditional e-matching is bad because they don’t 

exploit equality constraints during query planning.
● Relational database is a very powerful abstraction.
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