
Relational E-matching
Simpler, Faster, and Optimal

Yihong Zhang, Remy Wang, Max Willsey, Zachary Tatlock
University of Washington

1

relational queries only

involving joins

e.g., Q(a, c) :- R(a, b), S(b, c)

Relational e-matching

e-graphs relational databases

e-matching conjunctive queries
⊆

2

Overview
● Background
● Relational e-matching
● Evaluations and discussions

3

Overview
● Background
● Relational e-matching
● Evaluations and discussions

4

E-graphs are everywhere!

Spores [VLDB ’20]
Herbie [PLDI ’15]

egg [POPL ’20]

Diospyoros [ASPLOS ’21]TenSat [MLSys ’21]

Szalinski [PLDI ’20]

Z3 Ruler [OOPSLA ’21]
Metatheory.jl

Glenside [MAPS ’21]

...
CVC4

5

E-graphs are everywhere!
Program optimization

● Known as “equality
saturation”.

● Keeping many equivalent
programs in a single
e-graph.

● Non-destructive rewriting
until fixpoint or timeout.

SMT solver

● Solving theory of equality
with uninterpreted
functions.

● Combining theories
(Nelson-Oppen procedure)

6

E-graphs

● An e-graph represents a set of terms
and a congruence relation ≅
efficiently.

● E-class cf represents f(1, g(1)), f(1, g(2)),
f(2, g(1)), …
○ All equivalent with each other.
○ Exponentially many terms!

7

https://app.diagrams.net/?page=Page&scale=auto#G1rAHFdtUOC5pwfStRGvIRhmL8r7ovVrNQTRXEpag4BvA
https://app.diagrams.net/?page-id=Sdr3cvBIpXlINCJNsRdY&scale=auto#G1fZtByQkqOzEH-4C6jaiZB1n1h51VUf2Q

E-graphs

● An e-graph represents a set of terms
and a congruence relation ≅
efficiently.

● E-class cf represents f(1, g(1)), f(1, g(2)),
f(2, g(1)), …
○ All equivalent with each other.
○ Exponentially many terms!

8

https://app.diagrams.net/?page=Page&scale=auto#G1rAHFdtUOC5pwfStRGvIRhmL8r7ovVrNQTRXEpag4BvA
https://app.diagrams.net/?page-id=Sdr3cvBIpXlINCJNsRdY&scale=auto#G1fZtByQkqOzEH-4C6jaiZB1n1h51VUf2Q

E-graphs

● An e-graph represents a set of terms
and a congruence relation ≅
efficiently.

● E-class cf represents f(1, g(1)), f(1, g(2)),
f(2, g(1)), …
○ All equivalent with each other.
○ Exponentially many terms!

9

https://app.diagrams.net/?page=Page&scale=auto#G1rAHFdtUOC5pwfStRGvIRhmL8r7ovVrNQTRXEpag4BvA
https://app.diagrams.net/?page-id=Sdr3cvBIpXlINCJNsRdY&scale=auto#G1hwwFkpb52rq4czo4QrpQd9y3aslb0H-A

E-graphs

● An e-graph represents a set of terms
and a congruence relation ≅
efficiently.

● E-class cf represents f(1, g(1)), f(1, g(2)),
f(2, g(1)), …
○ All equivalent with each other.
○ Exponentially many terms!

10

https://app.diagrams.net/?page=Page&scale=auto#G1rAHFdtUOC5pwfStRGvIRhmL8r7ovVrNQTRXEpag4BvA
https://app.diagrams.net/?page-id=Sdr3cvBIpXlINCJNsRdY&scale=auto#G1wx-YARVLyYwiAwy7h2E22W4GmnEDRGVs

E-graphs

● An e-graph represents a set of terms
and a congruence relation ≅
efficiently.

● E-class cf represents f(1, g(1)), f(1, g(2)),
f(2, g(1)), …
○ All equivalent with each other.
○ Exponentially many terms!

11

https://app.diagrams.net/?page=Page&scale=auto#G1rAHFdtUOC5pwfStRGvIRhmL8r7ovVrNQTRXEpag4BvA
https://app.diagrams.net/?page-id=Sdr3cvBIpXlINCJNsRdY&scale=auto#G1Pxoig3QfyxHb-rE0EE4K85FKG2OQPLhF

E-graphs

● An e-graph represents a set of terms
and a congruence relation ≅
efficiently.

● E-class cf represents f(1, g(1)), f(1, g(2)),
f(2, g(1)), …
○ All equivalent with each other.
○ Exponentially many terms!

12

https://app.diagrams.net/?page=Page&scale=auto#G1rAHFdtUOC5pwfStRGvIRhmL8r7ovVrNQTRXEpag4BvA
https://app.diagrams.net/?page-id=Sdr3cvBIpXlINCJNsRdY&scale=auto#G1xrBdqIImCIU93g3IMsdBKhxHKZvl61c1

E-graphs

● An e-graph represents a set of terms
and a congruence relation ≅
efficiently.

● E-class cf represents f(1, g(1)), f(1, g(2)),
f(2, g(1)), …
○ All equivalent with each other.
○ Exponentially many terms!

13

https://app.diagrams.net/?page=Page&scale=auto#G1rAHFdtUOC5pwfStRGvIRhmL8r7ovVrNQTRXEpag4BvA
https://app.diagrams.net/?page-id=Sdr3cvBIpXlINCJNsRdY&scale=auto#G1rT8o5hUf3X82FhwrrJp0wTd_WBwnu9uG

E-graphs

● An e-graph represents a set of terms
and a congruence relation ≅
efficiently.

● E-class cf represents f(1, g(1)), f(1, g(2)),
f(2, g(1)), …
○ All equivalent with each other.

● Exponentially many terms!

14

https://app.diagrams.net/?page=Page&scale=auto#G1rAHFdtUOC5pwfStRGvIRhmL8r7ovVrNQTRXEpag4BvA
https://app.diagrams.net/?page-id=Sdr3cvBIpXlINCJNsRdY&scale=auto#G1fZtByQkqOzEH-4C6jaiZB1n1h51VUf2Q

● An e-graph represents a set of terms
and a congruence relation ≅
efficiently.

● E-class cf represents f(1, g(1)), f(1, g(2)),
f(2, g(1)), …
○ All equivalent to each other.

● Exponentially many terms!

E-graphs

15

https://app.diagrams.net/?page=Page&scale=auto#G1rAHFdtUOC5pwfStRGvIRhmL8r7ovVrNQTRXEpag4BvA
https://app.diagrams.net/?page-id=Sdr3cvBIpXlINCJNsRdY&scale=auto#G1fZtByQkqOzEH-4C6jaiZB1n1h51VUf2Q

● An e-graph represents a set of terms
and a congruence relation ≅
efficiently.

● E-class cf represents f(1, g(1)), f(1, g(2)),
f(2, g(1)), …
○ All equivalent to each other.

● Exponentially many terms!

E-graphs

16

https://app.diagrams.net/?page=Page&scale=auto#G1rAHFdtUOC5pwfStRGvIRhmL8r7ovVrNQTRXEpag4BvA
https://app.diagrams.net/?page-id=Sdr3cvBIpXlINCJNsRdY&scale=auto#G1fZtByQkqOzEH-4C6jaiZB1n1h51VUf2Q

E-matching
● E-matching: pattern matching over an e-graph.
● More formally: e-matching finds substitutions from

variables to e-classes such that the substituted terms
are represented by the e-graph.

f(α, g(α)) will match

f(1, g(1))
f(2, g(2))

…
f(N, g(N))

, witnessed by .

{α ↦ 1}
{α ↦ 2}

…
{α ↦ N}

f(1, α) will match
f(1, g(1))
f(1, g(2))

…
f(1, g(N))

, witnessed by {α ↦ cg}.

17

https://app.diagrams.net/?page-id=Sdr3cvBIpXlINCJNsRdY&scale=auto#G1fZtByQkqOzEH-4C6jaiZB1n1h51VUf2Q

E-matching
● E-matching: pattern matching over an e-graph.
● More formally: e-matching finds substitutions from

variables to e-classes such that the substituted terms
are represented by the e-graph.

● NP complete w.r.t. the pattern and the e-graph size.
● Responsible for 60–90% of the run time in equality

saturation.

18

E-matching
● E-matching: pattern matching over an e-graph.
● More formally: e-matching finds substitutions from

variables to e-classes such that the substituted terms
are represented by the e-graph.

● NP complete w.r.t. the pattern size.
● Responsible for 60–90% of the run time in equality

saturation.

19

E-matching
● E-matching: pattern matching over an e-graph.
● More formally: e-matching finds substitutions from

variables to e-classes such that the substituted terms
are represented by the e-graph.

● NP complete w.r.t. the pattern size.
● Responsible for 60–90% of the run time in equality

saturation.

Bottl
eneck

!

20

Existing e-matching algorithms

21

for e-class c in e-graph E:

Existing e-matching algorithms
f(α, g(α))

Ba
ck

tr
ac

ki
ng

 s
ea

rc
h

f(α
, g

(α
))

22

for e-class c in e-graph E:
 for f-node n1 in c:

Existing e-matching algorithms
f(α, g(α)) f(1,cg)

f(2,cg)

…
f(N,cg)Ba

ck
tr

ac
ki

ng
 s

ea
rc

h
f(α

, g
(α

))

23

for e-class c in e-graph E:
 for f-node n1 in c:
 subst = {root ↦ c, α ↦ n1.child1}

Existing e-matching algorithms
f(α, g(α)) f(1,cg)

f(2,cg)

…
f(N,cg)Ba

ck
tr

ac
ki

ng
 s

ea
rc

h
f(α

, g
(α

))

24

for e-class c in e-graph E:
 for f-node n1 in c:
 subst = {root ↦ c, α ↦ n1.child1}
 for g-node n2 in n1.child2:

Existing e-matching algorithms
f(α, g(α)) f(1,cg)

f(2,cg)

…
f(N,cg)

g(1)
g(2)
…

g(N)
g(1)
g(2)
…

g(N)
…

g(1)
g(2)
…

g(N)

Ba
ck

tr
ac

ki
ng

 s
ea

rc
h

f(α
, g

(α
))

25

for e-class c in e-graph E:
 for f-node n1 in c:
 subst = {root ↦ c, α ↦ n1.child1}
 for g-node n2 in n1.child2:
 if subst[α] = n2.child1:

Existing e-matching algorithms
f(α, g(α)) f(1,cg)

f(2,cg)

…
f(N,cg)

g(1)
g(2)
…

g(N)
g(1)
g(2)
…

g(N)
…

g(1)
g(2)
…

g(N)

✓

🗙

🗙
🗙
✓

🗙

🗙
🗙

✓

Ba
ck

tr
ac

ki
ng

 s
ea

rc
h

f(α
, g

(α
))

26

for e-class c in e-graph E:
 for f-node n1 in c:
 subst = {root ↦ c, α ↦ n1.child1}
 for g-node n2 in n1.child2:
 if subst[α] = n2.child1:
 yield subst

Existing e-matching algorithms
f(α, g(α)) f(1,cg)

f(2,cg)

…
f(N,cg)

g(1)
g(2)
…

g(N)
g(1)
g(2)
…

g(N)
…

g(1)
g(2)
…

g(N)

✓

🗙

🗙
🗙
✓

🗙

🗙
🗙

✓

Ba
ck

tr
ac

ki
ng

 s
ea

rc
h

f(α
, g

(α
))

27

Existing e-matching algorithms
f(α, g(α)) f(1,cg)

f(2,cg)

…
f(N,cg)

g(1)
g(2)
…

g(N)
g(1)
g(2)
…

g(N)
…

g(1)
g(2)
…

g(N)

✓

🗙

🗙
🗙
✓

🗙

🗙
🗙

✓

Ba
ck

tr
ac

ki
ng

 s
ea

rc
h

f(α
, g

(α
))

O(N2)!
Yet at most
O(N) matches

for e-class c in e-graph E:
 for f-node n1 in c:
 subst = {root ↦ c, α ↦ n1.child1}
 for g-node n2 in n1.child2:
 if subst[α] = n2.child1:
 yield subst

28

Existing e-matching algorithms

● Relies on naive backtracking.
● Uses several ad hoc

optimizations for specific
patterns.

● No data complexity bound.

f(1,cg)

f(2,cg)

…
f(N,cg)

g(1)
g(2)
…

g(N)
g(1)
g(2)
…

g(N)
…

g(1)
g(2)
…

g(N)

✓

🗙

🗙
🗙
✓

🗙

🗙
🗙

✓

Ba
ck

tr
ac

ki
ng

 s
ea

rc
h

f(α
, g

(α
))

29

Overview
● Background
● Relational e-matching
● Evaluation and future work

30

f(α, g(α))
g(f(α, α))

…

Relational e-matching
● Takes an e-graph and a list of

patterns.
● Transforms the e-graph to a

relational database.
● Compiles all e-matching

patterns to conjunctive
queries.

● Run the conjunctive query on
the relational database!

Q(root, α) ←
Rf(root, α, x), Rg(x, α)

Q(root, α) ←
Rg(root, x), Rf(x, α, α)

…

id arg1 arg2

cf
1 cg

cf 2 cg

… … …

cf N cg

id arg1

cg 1

cg 2

… …

cg N

Rf

Rg

Ri=1…N

id

i

31

https://app.diagrams.net/?page-id=Sdr3cvBIpXlINCJNsRdY&scale=auto#G1fZtByQkqOzEH-4C6jaiZB1n1h51VUf2Q

Observations
E-matching

Finding substitutions
such that the substituted
terms are present in the
e-graph.

Conjunctive queries

Finding substitutions
such that the substituted
atoms are present in the
relational database.

🤝

32

f(α, g(α))
g(f(α, α))

…

Relational e-matching workflow

Q(root, α) ← Rf (root, α, x), Rg(x, α)
Q(root, α) ← Rg(root, x), Rf (x, α, α)

…

id arg1 arg2

cf
1 cg

cf 2 cg

… … …

cf N cg

id arg1

cg 1

cg 2

… …

cg N

Rf

Rg

Ri=1…N
id

i

well suited for

equality saturation

33

https://app.diagrams.net/?page-id=Sdr3cvBIpXlINCJNsRdY&scale=auto#G1fZtByQkqOzEH-4C6jaiZB1n1h51VUf2Q

Relational e-matching
● Takes an e-graph and a list of patterns.
● Transforms the e-graph to a relational database.
● Compiles all e-matching patterns to conjunctive

queries.
● Run the conjunctive query on the relational database!

well suited for equality saturation

34

E-graphs are relational databases

id arg1 arg2

cf 1 cg

cf 2 cg

… … …

cf N cg

id arg1

cg 1
cg 2
… …
cg N

Rf

Rg

Ri=1…N
id

i
35

https://app.diagrams.net/?page-id=Sdr3cvBIpXlINCJNsRdY&scale=auto#G1fZtByQkqOzEH-4C6jaiZB1n1h51VUf2Q

E-graphs are relational databases

id arg1 arg2

cf 1 cg

cf 2 cg

… … …

cf N cg

id arg1

cg 1
cg 2
… …
cg N

Rf

Rg

Ri=1…N
id

i
36

https://app.diagrams.net/?page-id=Sdr3cvBIpXlINCJNsRdY&scale=auto#G1hwwFkpb52rq4czo4QrpQd9y3aslb0H-A

E-matching is conjunctive queries

f(α, g(α)) Q(root, α) ←
Rf (root, α, x), Rg(x, α)

ind = {}
for (x, α) in Rg: # build index
 ind.insert((x, α))

Rg(cg , 1)
Rg(cg , 2)

…
Rg(cg , N)

bu
ild

 h
as

h

37

E-matching is conjunctive queries

f(α, g(α)) Q(root, α) ←
Rf (root, α, x), Rg(x, α)

ind = {}
for (x, α) in Rg: # build index
 ind.insert((x, α))
for (root, α, x) in Rf: # probe
 if (α, x) in ind:
 yield {root ↦ root, α ↦ α}

Rg(cg , 1)
Rg(cg , 2)

…
Rg(cg , N)

Rf(cf , 1, cf)
Rf(cf , 2, cf)

…
Rf(cf , N, cf)

bu
ild

 h
as

h

pr
ob

e

✓

✓

✓

O(N2) O(N)

38

Why is relational e-matching faster?
f(α, g(α))

Enumerate all terms of the
shape f(α, g(β)) and check if α = β
only before yielding.

Q(root, α) ←
 Rf (root, α, x), Rg(x, α)

Build indices on both α and x,
and only enumerate terms
where constraints on both
x and α are satisfied.

equality
constraints

structural
constraints

39

E-matching is conjunctive queries
f(α, g(α)) Q(root, α) ←

Rf (root, α, x), Rg(x, α)

ind = {}
for (id, arg1) in Rg: # build index
 ind.insert((id, arg1))
for (id, arg1, arg2) in Rf: # probe
 if (arg2, arg1) in ind:
 yield {root ↦ id, α ↦ arg2}

Rg(cg , 1)
Rg(cg , 2)

…
Rg(cg , N)

Rf(cf , 1, cf)
Rf(cf , 2, cf)

…
Rf(cf , N, cf)

bu
ild

 h
as

h

pr
ob

e

✓

✓

✓

f(1,cg)

…
f(N,cg)

g(1)
…

g(N)
…

g(1)
…

g(N)

✓

🗙

🗙

✓

Ba
ck

tr
ac

ki
ng

 s
ea

rc
h

for e-class c in e-graph E:
 for f-node n1 in c:
 subst = {root ↦ c, α ↦ n1.child1}
 for g-node n2 in n1.child2:
 if subst[α] = n2.child1:
 yield subst

40

Comparison to traditional e-matching

✖ Exploits structural
constraints only.

✖ Top-down backtracking
search only.

✖ No theoretical guarantee.

Traditional e-matching

✓ Exploits both structural
constraints and equality
constraints.

✓ Top-down, bottom-up,
middle-out, etc. depending on
the query optimizer.

✓ Achieves optimality by
adapting results from database
research.

Relational e-matching

41

Comparison to traditional e-matching

✖ Exploits structural
constraints only.

✖ Top-down backtracking
search only.

✖ No theoretical guarantee.

Traditional e-matching

✓ Exploits both structural
constraints and equality
constraints.

✓ Top-down, bottom-up,
middle-out, etc. depending on
the query optimizer.

✓ Achieves optimality by
adapting results from database
research.

Relational e-matching

42

Comparison to traditional e-matching

✖ Exploits structural
constraints only.

✖ Top-down backtracking
search only.

✖ No theoretical guarantee.

Traditional e-matching

✓ Exploits both structural
constraints and equality
constraints.

✓ Top-down, bottom-up,
middle-out, etc. depending on
the query optimizer.

● E.g., e-matching f(g(h(x))) on
e-graphs with only one
h-node.

Relational e-matching

43

Comparison to traditional e-matching

✖ Exploits structural
constraints only.

✖ Top-down backtracking
search only.

✖ No theoretical guarantee.

Traditional e-matching

✓ Exploits both structural
constraints and equality
constraints.

✓ Top-down, bottom-up,
middle-out, etc. depending on
the query optimizer.

✓ Achieves optimality by
adapting results from database
research.

Relational e-matching

44

Comparison to traditional e-matching

✖ Exploits structural
constraints only.

✖ Top-down backtracking
search only.

✖ No theoretical guarantee.

Traditional e-matching

✓ Exploits both structural
constraints and equality
constraints.

✓ Top-down, bottom-up,
middle-out, etc. depending on
the query optimizer.

✓ Achieves optimality by
adapting results from database
research.

Relational e-matching

45

Data complexity results

46

● Run time = max output size an e-graph with the same
size could achieve.

● Application of database research on worst-case optimal
join (WCOJ) algorithm.

47

● A more involved theorem; use the structure of the
compiled conjunctive query in the proof.

● Run time = function of e-graph size and actual output
size.

48

Overview
● Background
● Relational e-matching
● Evaluation and discussions

49

Evaluations
● Uses two largest test suites of egg, a state-of-the-art

e-graph framework.
● Baseline: egg’s e-matching procedure.
● Uses generic join for solving conjunctive query.
● Run twice once with index building and once without.

50

Evaluations 6 orders of
magnitude speedup

Index building takes
time

Similar performance
on linear patterns.

Speedup for specific
linear patterns
((+ a (* -1 b))

51

Multi-patterns
● Multi-patterns: list of patterns

(p1, …, pn) to be matched
simultaneously.

● Studied in literature & used by
practical applications.

● Relational e-matching supports
multi-patterns for free!

(f(α, β), f(β, γ))

Q(r1, r2, α, β, γ) :-
Rf (r1, α, β), Rf (r2, β, γ)

52

Functional dependencies (FDs) in e-graph
● FD: Dependencies between attributes.
● “Every e-node uniquely identifies an e-class it belongs

to” translates to FD in the relational representation.
● FD allows us to derive even tighter bound.

○ f(g(α), h(α)) translates to Q(r, α) :- Rf(r, x, y), Rg(x, α), Rh(y, α), which
has a worst-case complexity of O(N2/3);

○ FD tells us α uniquely determines g(α) and h(α), and therefore
f(g(α), h(α)); simply enumerating α gives an O(N) bound.

53

● Incremental e-matching = Incremental View
Maintenance (IVM) in database.

● More join algorithms & more optimizations.
● Building on existing database management systems

(DBMS).
○ We built a proof-of-concept prototype with sqlite!
○ Persistence, scalability, concurrency, …

Future work

Thank you!

54

Takeaways
● Relational e-matching is simpler, faster, and optimal.
● Traditional e-matching is bad because they don’t

exploit equality constraints during query planning.
● Relational database is a very powerful abstraction.

55

