E-matching ⊆ Relational Join
Simpler, faster, and optimal

Yihong Zhang, Remy Wang, Oliver Flatt, David Cao, Philip Zucker, Eli Rosenthal, Zachary Tatlock, Max Willsey

MAPPING E-GRAPHS TO RELATIONS

An example e-graph. Each solid box denotes an e-node and each dashed box denotes an e-class, which represents a set of equivalent terms. Labels at top-left corner denote the e-class id. Represented terms include \(f(1,g(1)), f(1,g(2)), f(2,g(1)), \) etc. (\(O(N^2) \) total).

REDUCING E-MATCHING TO CONJUNCTIVE QUERIES

\[f(\alpha, g(\alpha)) \]
An e-matching pattern that matches all expressions where
1. the 1st argument to \(f \) is \(g \) and
2. the 2nd argument of \(f \) and the 1st argument of \(g \) refer to the same e-class.

\[Q(\text{root}, \alpha) \rightarrow R_f(\text{root}, \alpha, x), R_g(x, \alpha) \]
The conjunctive query derived from the pattern. Nested functions are flattened by introducing auxiliary variables \((x) \).

Enumerated terms by backtracking-based e-matching \((O(N^2)) \) many

\[
\begin{align*}
&f(1,g(1)) \\
&f(2,g(1)) \\
&f(2,g(2)) \\
&f(3,g(1)) \\
&f(3,g(2)) \\
&f(3,g(3))
\end{align*}
\]

Tuples visited by relational e-matching \((O(N)) \) many

\[
\begin{align*}
&R_f \\
&\quad (c_1,1,g_1) \quad (c_2,1) \quad (c_3,1) \\
&\quad (c_2,2,g_2) \quad (c_2,2) \quad (c_3,2)
\end{align*}
\]

E-GRAPH & E-MATCHING

- E-graph is a data structure that efficiently represents sets of congruent terms.
- E-graph has wide applications in automated-theorem proving and program optimization.
- E-matching is a fundamental query of e-graphs that searches for a pattern modulo congruence.
- Existing backtracking-based e-matching algorithms rely on depth-first search over the e-graph and fail to take equality constraints over the pattern into consideration during query planning.

CQS & GENERIC JOIN

- Conjunctive query (CQ) is a restricted class of relational queries that only involve joins of relations.
- Generic join is an algorithm proposed by Ngo et al. that computes CQs in worst-case optimal time with respect to the output size.
- Has great performance especially when the CQ is complex (e.g., cyclic).

RELATIONAL E-MATCHING

- We propose relational e-matching, which reduces e-matching to CQs over a relational representation of e-graphs.
- The CQ form of e-matching fully exploits the equality constraints over the pattern, compared to existing backtracking-based algorithms where only the structural constraints are considered during query planning.
- To solve the complex CQs generated by relational e-matching, we use generic joins as our solver subroutine.
- Relational e-matching preserves the worst-case optimality of generic joins: Fix a pattern \(p \), let \(M(p,E) \) be the set of substitutions yielded by e-matching on e-graph \(E \) with size \(n \), relational e-matching runs in time \(O(\max_E(|M(p,E)|)) \).

BENCHMARK & RESULTS

We benchmarked with three representative e-matching queries, collected from the test suite for mathematical expressions of egg, a state-of-the-art e-graph framework.

- On e-matching queries with equality constraints (the cyclic and the non-linear acyclic cases), relational e-matching achieves asymptotic speed-ups up to \(426 \times \) over the baseline e-matching algorithm by exploiting the equality constraints during query planning.
- On e-matching queries without equality constraints (the linear case), relational e-matching achieves similar performance as the baseline e-matching.

Speed-ups over backtracking-based e-matching algorithm

We compared our results to existing backtracking-based e-matching algorithms.

More details at