

Nimble: Efficiently Compiling Dynamic Neural Networks for Model Inference

Haichen Shen*, Jared Roesch*, Zhi Chen, Wei Chen, Yong Wu, Mu Li, Vin Sharma, Zachary Tatlock, Yida Wang

DNN models are exhibiting more dynamism

Dynamic model inference is an important workload

Smart speaker

Translation

Recommendation

Existing approaches to handle dynamism

- 1. Extend the representation: TensorFlow, MXNet
- 2. Rely on the host language: PyTorch, DyNet
- 3. Optimization for frameworks: TF Fold, JANUS
- Limitation for inference
- **X** Too heavyweight for model inference
- X Lack portability: third-party libraries or Python
- X Optimization doesn't apply to all types of models

Deep learning compilers are promising for model inference

XLA: Optimizing Compiler for Ma

XLA (Accelerated Linear Algebra) is a domain-specific compiler for with potentially no source code changes.

The results are improvements in speed and memory usage: most ir end

TVM: An Automated End-to-End Optimizing

Tianqi Chen1, Thierry Moreau1, Ziheng Jiang1,2, Lia

But none of them fully

Meghan Cowan¹, Haichen Shen¹, Leyuan Wang^{4,2}, Yuwei Hu⁵, Luis Cez ¹Paul G. Allen School of Computer Science & Engineerin

² AWS, ³Shanghai Jiao Tong University, ⁴UC

Glow: Graph Lowering Compiler Techniques for Neural Networks

Nadav Rotem, Jordan Fix, Saleem Abdulrasool, Garret Catron, Summer Deng, Roman Dzhabarov. Nick Gibson. James Hegeman. Meghan Lele. Roman Levenstein,

MLIR: A Compiler Infrastructure for the End of Moore's Law

Chris Lattner *	Mehdi Amini	Uday Bondhugula	Albert Coher	n Andy Da	avis			
Google	Google	IISc	Google	Googl	e			
Jacques Pienaar	River Rid	dle Tatiana Shp	eisman Nic	colas Vasilach	lache			
Google	Google	Googl	e	Google				
Oleksandr Zinenko Google								
support	t dyna	mic mo	dels					

Challenges to support dynamic models

 $\ensuremath{\mathbb{C}}$ 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Challenges to support dynamic models

aws

Nimble: compile and execute dynamic models

Nimble: compile and execute dynamic models

Any: typing dynamic dimension

Any: an unknown dimension at compilation time

Define a tensor type:

Tensor<(Any, 3, 32, 32), fp32>

Any in operator type relation

Describe the type relation between inputs and outputs

```
arange: fn(start:fp32, stop:fp32, step:fp32)
    -> Tensor<(Any), fp32>
```

Valid only when Any = 1 or 8

How to infer the shape at runtime?

- Instrument *shape functions* in the program
 - Calculate the output shape
 - Perform the type checking
- Advantages of shape function:
 - Low overhead at runtime
 - Treat as regular ops and apply optimization
 - Generate shape functions for fused ops

Nimble: compile and execute dynamic models

Problem in memory planning

Existing deep learning compilers don't encode memory allocation in IRs

- Memory planning coupled with runtime
- Complicated under heterogeneous execution
- Don't support dynamic memory allocation

Approach for memory planning

Explicitly manifest the memory allocation in the program

- Perform optimization such as liveness analysis, device placement
- No runtime modification and negligible runtime overhead

Introduce new IR nodes

- invoke_mut
- alloc_storage
- alloc_tensor
- kill

16

fn main(t1, t2: Tensor<10>) -> Tensor<10> {

```
add(t1, t2)
```



```
fn main(t1, t2: Tensor<10>) -> Tensor<10> {
   let buf = alloc_storage(size=40);
   let out = alloc_tensor(buf, offset=0, shape=(10), dtype=f32);
   add(t1, t2)
}
```

1. Explicit allocate output buffer

```
fn main(t1, t2: Tensor<10>) -> Tensor<10> {
    let buf = alloc_storage(size=40);
    let out = alloc_tensor(buf, offset=0, shape=(10), dtype=f32);
    invoke_mut(add, (t1, t2), (out));
    out
}
```

2. Update the kernel call with explicit output buffer

fn (x: Tensor<?,2>, y: Tensor<1,2>)->Tensor<?,2> {

concat((x, y))

aws

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

```
fn (x: Tensor<?,2>, y: Tensor<1,2>)->Tensor<?,2> {
   let xshape = shape_of(x);
   let yshape = shape_of(y);
```

concat((x, y))

1. Extract the shape from tensors

```
fn (x: Tensor<?,2>, y: Tensor<1,2>)->Tensor<?,2> {
    let xshape = shape_of(x);
    let yshape = shape_of(y);
```

invoke_shape_func(concat, (xshape, yshape), (oshape), ...);

```
concat((x, y))
```

2. Compute the output shape using shape function


```
fn (x: Tensor<?,2>, y: Tensor<1,2>)->Tensor<?,2> {
    let xshape = shape_of(x);
    let yshape = shape_of(y);
```

```
invoke_shape_func(concat, (xshape, yshape), (oshape), ...);
let buf1 = alloc_storage(size=oshape);
let out = alloc_tensor(buf1, oshape, ...);
concat((x, y))
```

3. Allocate the output buffer using the calculated output shape

```
fn (x: Tensor<?,2>, y: Tensor<1,2>)->Tensor<?,2> {
    let xshape = shape_of(x);
    let yshape = shape_of(y);
```

```
invoke_shape_func(concat, (xshape, yshape), (oshape), ...);
let buf1 = alloc_storage(size=oshape);
let out = alloc_tensor(buf1, oshape, ...);
invoke_mut(concat, (x, y), (out));
out
```

4. Update the kernel call with explicit output buffers

```
fn (x: Tensor<?,2>, y: Tensor<1,2>)->Tensor<?,2> {
  let xshape = shape_of(x);
  let yshape = shape_of(y);
  let buf0 = alloc_storage(size=16);
  let oshape = alloc_tensor(buf0, ...);
  invoke_shape_func(concat, (xshape, yshape), (oshape), ...);
  let buf1 = alloc_storage(size=oshape);
  let out = alloc_tensor(buf1, oshape, ...);
  invoke_mut(concat, (x, y), (out));
  out
```

5. Manifest memory allocation for shape functions

Which device to place each buffer?

```
fn (x: Tensor<?,2>, y: Tensor<1,2>)->Tensor<?,2> {
    let xshape = shape_of(x);
    let yshape = shape_of(y);
    let buf0 = alloc_storage(size=16, device=?);
    let oshape = alloc_tensor(buf0, ...);
    invoke_shape_func(concat, (xshape, yshape), (oshape), ...); CPU
    let buf1 = alloc_storage(size=oshape, device=?);
    let out = alloc_tensor(buf1, oshape, ...);
    invoke_op(concat, (x, y), (out)); GPU
    out
```

Use constraints and union-find algorithm

Nimble: compile and execute dynamic models

Challenges to symbolic code generation

Symbolic-shaped kernels perform worse than staticshaped kernels.

How to tune kernels with symbolic shapes?

Challenges to symbolic code generation

Symbolic-shaped kernels perform worse than staticshaped kernels.

• Loop tiling + parallelism \rightarrow boundary check in the loop body

How to tune kernels with symbolic shapes?

Challenges to symbolic code generation

Symbolic-shaped kernels perform worse than staticshaped kernels.

- Loop tiling + parallelism \rightarrow boundary check in the loop body
- Generate multiple kernels based on the tiling factor
- □ Use symbolic simplifier to remove the boundary check
- Dispatch to a corresponding kernel at runtime
- How to tune kernels with symbolic shapes?

Tuning for symbolic shape

- 1. Tune the kernel after replacing the symbolic dims by a large value (e.g., 64, 128)
- 2. Pick top *k* configurations, and evaluate the performance on other shapes
- 3. Pick the configuration that performs best on average among shapes previously evaluated

Nimble: compile and execute dynamic models

Tensor-oriented CISC-style VM ISA

Instruction	Description
Move	Moves data from one register to another.
Ret	Returns the object in register result to caller's register.
Invoke	Invokes a function at in index.
InvokeClosure	Invokes a Relay closure.
InvokePacked	Invokes a TVM compiled kernel.
AllocStorage	Allocates a storage block.
AllocTensor	Allocates a tensor value of a certain shape.
AllocTensorReg	Allocates a tensor based on a register.
AllocDatatype	Allocates a data type using the entries from a register.
AllocClosure	Allocates a closure with a lowered virtual machine function.
If	Jumps to the true or false offset depending on the condition.
Goto	Unconditionally jumps to an offset.
LoadConst	Loads a constant at an index from the constant pool.
DeviceCopy	Copies a chunk of data from one device to another.

aws

Evaluation

What is the overall performance?

How much overhead does *Nimble* introduce for handling dynamism?

How effective are the proposed optimization techniques?

Evaluation

What is the overall performance?

How much overhead does *Nimble* introduce for handling dynamism?

How effective are the proposed optimization techniques?

Evaluation Setup

Models

• LSTM (control flow), Tree-LSTM (dynamic data structure), BERT (dynamic input shapes)

Dataset

• MRPC for LSTM and BERT, Stanford Sentiment Treebank for Tree-LSTM

EC2 instances

• c5.9xlarge (Intel CPU), g4dn.4xlarge (Nvidia GPU), a1.4xlarge (ARM CPU)

Compare to MXNet, PyTorch, DyNet, TensorFlow, TF Fold

Use batch = 1 for all cases

Evaluation: LSTM models

Unit: us/token		1 layer		2 layers			
	Intel	Nvidia	ARM	Intel	Nvidia	ARM	
Nimble	47.8	54.6	182.2	97.2	107.4	686.4	
PyTorch	2.2x	1.5x	15.0x	2.3x	1.5x	8.5x	
DyNet	19.6x	1.3x	31.3x	24.2x	1.3x	18.7x	
MXNet	4.5x	2.5x	20.3x	4.1x	2.1x	11.3x	
TensorFlow	6.3x	5.6x	5.4x	7.1x	3.8x	3.2x	

Evaluation: Tree-LSTM and BERT

	Intel	ARM		Intel	Nvidia	ARM
Nimble	40.3	86.3	Nimble	307.0	95.2	2862.6
PyTorch	17.4x	19.9x	PyTorch	1.6x	2.3x	4.1x
DyNet	2.4x	3.6x	MXNet	1.5x	1.6x	3.0x
TF Fold	5.2x	-	TensorFlow	2.5x	1.3x	1.05x

Tree-LSTM latency (us/token)

BERT latency (us/token)

Nimble overhead compared to static compiler

Device	TVM lat. (ms)	Nimble lat. (ms)	Kernel lat. (ms)	Others (ms)
Intel	19.4	24.3	21.1	3.26
ARM	223.5	237.4	228.6	8.82
Nvidia	5.6	5.9	5.6	0.26

BERT with sequence length 128

Conclusion

- Nimble compiles and optimizes neural networks with dynamism
- We design and implement a lightweight and portable VM-based runtime
- Nimble lowers the latency by up to 30x compared to baseline on multiple hardware platforms.

Thank you