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DNN models are exhibiting more dynamism
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Dynamic model inference is an important workload
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Existing approaches to handle dynamism

1. Extend the representation: TensorFlow, MXNet
2. Rely on the host language: PyTorch, DyNet

3. Optimization for frameworks: TF Fold, JANUS
Limitation for inference

X Too heavyweight for model inference

X Lack portability: third-party libraries or Python

X Optimization doesn’'t apply to all types of models
adWws
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Deep learning compilers are promising for model
inference
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But none of them fully support dynamic models... aWs



Challenges to support dynamic models
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Challenges to support dynamic models

Dynamic type inference

Memory planning

Codegen for symbolic shapes

Dynamic model execution
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Nimble: compile and execute dynamic models
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Nimble: compile and execute dynamic models

Dynamic Type Inference

Compiler
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Any: typing dynamic dimension

Any: an unknown dimension at compilation time

Define a tensor type:

Tensor<(Any, 3, 32, 32), fp32>
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Any in operator type relation

Describe the type relation between inputs and outputs

arange: fn(start:fp32, stop:fp32, step:fp32)
-> Tensor<(Any), fp32>

broadcast: fn(Tensor<(Any, /Any), fp32>,
Tensor<( 1, 8)|, fp32>)
-> Tensor<(Any, 8), fp32>

Valid only when Any =1 or 8

adWws
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How to infer the shape at runtime?

- Instrument shape functions in the program
o Calculate the output shape
o Perform the type checking

- Advantages of shape function:

o Low overhead at runtime
o Treat as regular ops and apply optimization

o Generate shape functions for fused ops
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Nimble: compile and execute dynamic models

Dynamic Oriented

Optimization ﬁ

Compiler
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Problem in memory planning

Existing deep learning compilers don't encode memory
allocation in IRs

« Memory planning coupled with runtime

« Complicated under heterogeneous execution

* Don't support dynamic memory allocation

adWws
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Approach for memory planning

Explicitly manifest the memory allocation in the program
» Perform optimization such as liveness analysis, device placement

* No runtime modification and negligible runtime overhead

Introduce new IR nodes

e invoke_mut
« alloc_storage
e alloc_tensor

« kill

adWs
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Example 1: Manifest the memory allocation
(static shape)

fn main(t1, t2: Tensor<10>) -> Tensor<10> {

add(t1, t2)

adWws
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Example 1: Manifest the memory allocation
(static shape)

fn main(t1, t2: Tensor<10>) -> Tensor<10> {

let buf = alloc_storage(size=40);
let out = alloc_tensor(buf, offset=0, shape=(10), dtype=f32);
add(t1, t2)

1. Explicit allocate output buffer

adWws



Example 1: Manifest the memory allocation
(static shape)

fn main(t1, t2: Tensor<10>) -> Tensor<10> {
let buf = alloc_storage(size=40);
let out = alloc_tensor(buf, offset=0, shape=(10), dtype=f32);
invoke_mut(add, (t1, t2), (out));
out

}

2. Update the kernel call with explicit
output buffer

adWws
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Example 2: Manifest the memory allocation
(dynamic shape)

fn (x: Tensor<?,2>, y: Tensor<1,2>)->Tensor<?,2> {

concat((x, y))

adWws
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Example 2: Manifest the memory allocation
(dynamic shape)

fn (x: Tensor<?,2>, y: Tensor<1,2>)->Tensor<?,2> {
let xshape = shape_of(x);
let yshape = shape_of(y);

concat((x, y))

1. Extract the shape from tensors

adWws
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Example 2: Manifest the memory allocation
(dynamic shape)

fn (x: Tensor<?,2>, y: Tensor<1,2>)->Tensor<?,2> {
let xshape = shape_of(x);
let yshape = shape_of(y);

invoke_shape_func(concat, (xshape, yshape), (oshape), ...);

concat((x, y))

2. Compute the output shape using
shape function
aws



Example 2: Manifest the memory allocation
(dynamic shape)
fn (x: Tensor<?,2>, y: Tensor<1,2>)->Tensor<?,2> {

let xshape = shape_of(x);
let yshape = shape_of(y);

invoke_shape_func(concat, (xshape, yshape), (oshape), ...);
let buf1 = alloc_storage(size=oshape);
let out = alloc_tensor(buf1, oshape, ...);
concat((x, y))
}

3. Allocate the output buffer using the
calculated output shape
aws



Example 2: Manifest the memory allocation
(dynamic shape)
fn (x: Tensor<?,2>, y: Tensor<1,2>)->Tensor<?,2> {

let xshape = shape_of(x);
let yshape = shape_of(y);

invoke_shape_func(concat, (xshape, yshape), (oshape), ...);
let buf1l = alloc_storage(size=oshape);

let out = alloc_tensor(buf1, oshape, ...);
invoke_mut(concat, (x, y), (out));

out

4. Update the kernel call with explicit
output buffers

adWws



Example 2: Manifest the memory allocation
(dynamic shape)

fn (x: Tensor<?,2>, y: Tensor<1,2>)->Tensor<?,2> {
let xshape = shape_of(x);
let yshape = shape_of(y);
let buf® = alloc_storage(size=16);
let oshape = alloc_tensor(bufd, ...);

invoke_shape_func(concat, (xshape, yshape), (oshape), ...);
let buf1l = alloc_storage(size=oshape);
let out = alloc_tensor(buf1, oshape, ...);
invoke_mut(concat, (x, y), (out));
out

b

5. Manifest memory allocation for
shape functions
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Which device to place each buffer?

fn (x: Tensor<?,2>, y: Tensor<1,2>)->Tensor<?,2> {
let xshape = shape_of(x);
let yshape = shape_of(y);
let buf@ = alloc_storage(size=16, device=f);

let oshape = alloc_tensor(bufe, ...);

invoke_shape_func(concat, (xshape, yshape), (oshape), ...);
let buf1l = alloc_storage(size=oshape, device=f{);

let out = alloc_tensor(buf1, oshape, ...);

invoke_op(concat, (x, y), (out));

out

Use constraints and union-find algorithm

adWws



Nimble: compile and execute dynamic models

Symbolic Codegen

Compiler
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Challenges to symbolic code generation

Symbolic-shaped kernels perform worse than static-
shaped kernels.

How to tune kernels with symbolic shapes?

adWws
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Challenges to symbolic code generation

Symbolic-shaped kernels perform worse than static-
shaped kernels.
» Loop tiling + parallelism - boundary check in the loop body

How to tune kernels with symbolic shapes?

adWws
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Challenges to symbolic code generation

Symbolic-shaped kernels perform worse than static-
shaped kernels.

» Loop tiling + parallelism - boundary check in the loop body

O Generate multiple kernels based on the tiling factor

O Use symbolic simplifier to remove the boundary check
O Dispatch to a corresponding kernel at runtime

How to tune kernels with symbolic shapes?

adWws
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Tuning for symbolic shape

1. Tune the kernel after replacing the symbolic dims by a
large value (e.qg., 64, 128)

2. Pick top k configurations, and evaluate the
performance on other shapes

3. Pick the configuration that performs best on average
among shapes previously evaluated

adWws



Nimble: compile and execute dynamic models

VM-based runtime

Runtime

sh)

Nimble executable

|:> o Platform-independent bytecode
o Platform-dependent kernels
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Tensor-oriented CISC-style VM ISA

Instruction Description

Move Moves data from one register to another.
Ret Returns the object in register result to caller’s register.
Invoke Invokes a function at in index.

InvokeClosure

Invokes a Relay closure.

InvokePacked

Invokes a TVM compiled kernel.

AllocStorage

Allocates a storage block.

AllocTensor

Allocates a tensor value of a certain shape.

AllocTensorReg

Allocates a tensor based on a register.

AllocDatatype

Allocates a data type using the entries from a register.

AllocClosure

Allocates a closure with a lowered virtual machine function.

If

Jumps to the true or false offset depending on the condition.

Goto

Unconditionally jumps to an offset.

LoadConst

Loads a constant at an index from the constant pool.

DeviceCopy

Copies a chunk of data from one device to another.

adWws



Evaluation

What is the overall performance?

How much overhead does Nimble introduce for handling
dynamism?

How effective are the proposed optimization techniques?

adWws
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Evaluation

What is the overall performance?

How much overhead does Nimble introduce for handling
dynamism?
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Evaluation Setup

Models

e LSTM (control flow), Tree-LSTM (dynamic data structure), BERT (dynamic
input shapes)

Dataset
« MRPC for LSTM and BERT, Stanford Sentiment Treebank for Tree-LSTM

EC2 instances
» c¢5.9xlarge (Intel CPU), g4dn.4xlarge (Nvidia GPU), a1.4xlarge (ARM CPU)

Compare to MXNet, PyTorch, DyNet, TensorFlow, TF Fold
Use batch = 1 for all cases

adWws
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Evaluation: LSTM models

Uit

Sl ntel  Nvidia  ARM Intel  Nvidia  ARM

Nimble 47.8 54.6 182.2 97.2 107.4 686.4
PyTorch 2.2X 1.5x 15.0x 2.3X 1.5x 8.5x
DyNet 19.6x 1.3x 31.3x 24.2x 1.3X 18.7x
MXNet 4.5x 2.5x 20.3x 4.1x 2.1x 11.3x

TensorFlow 6.3X 5.6x 5.4x 7.1x 3.8x 3.2X
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Evaluation: Tree-LSTM and BERT

EEETErT BT

Nimble 40.3 86.3 Nimble 307.0 95.2 2862.6
PyTorch 17.4x 19.9x PyTorch 1.6x 2.3X 4.1x

DyNet 2.4x 3.6x MXNet 1.5x 1.6x 3.0x
TF Fold 5.2X - TensorFlow  2.5x 1.3x 1.05x
Tree-LSTM latency (us/token) BERT latency (us/token)
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Nimble overhead compared to static compiler

Device TVM Nimble Kernel lat. Others
lat. (ms) lat. (ms) (ms) (ms)
Intel 19.4 24.3 211 3.26
ARM 223.5 237 .4 228.6 8.82
Nvidia 5.6 5.9 5.6 0.26

BERT with sequence length 128
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Conclusion
* Nimble compiles and optimizes neural networks with
dynamism

« We design and implement a lightweight and portable
VM-based runtime

* Nimble lowers the latency by up to 30x compared to
baseline on multiple hardware platforms.
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Thank you
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