
© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Haichen Shen*, Jared Roesch*, Zhi Chen, Wei Chen, Yong Wu,
Mu Li, Vin Sharma, Zachary Tatlock, Yida Wang

Nimble: Efficiently Compiling Dynamic
Neural Networks for Model Inference

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

DNN models are exhibiting more dynamism

Dynamic input size Control flow Dynamic output shapes

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Dynamic model inference is an important workload

Smart speaker Translation Recommendation

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Existing approaches to handle dynamism

1. Extend the representation: TensorFlow, MXNet

2. Rely on the host language: PyTorch, DyNet

3. Optimization for frameworks: TF Fold, JANUS

Limitation for inference

✘ Too heavyweight for model inference

✘ Lack portability: third-party libraries or Python

✘ Optimization doesn’t apply to all types of models

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Deep learning compilers are promising for model
inference

But none of them fully support dynamic models…

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Challenges to support dynamic models

Models in …

Intermediate Representation

Optimization

Code generation

Runtime

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Challenges to support dynamic models

Models in …

Intermediate Representation

Optimization

Code generation

Runtime

Dynamic type inference

Memory planning

Codegen for symbolic shapes

Dynamic model execution

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Nimble: compile and execute dynamic models

Compiler

Nimble executable
o Platform-independent bytecode
o Platform-dependent kernels

Runtime

VM-based runtimeDynamic Type Inference

Dynamic Oriented
Optimization

Symbolic Codegen

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Compiler

Nimble: compile and execute dynamic models

Dynamic Type Inference

Dynamic Oriented
Optimization

Symbolic Codegen Nimble executable
o Platform-independent bytecode
o Platform-dependent kernels

Runtime

VM-based runtime

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Any: typing dynamic dimension

Any: an unknown dimension at compilation time

Define a tensor type:

Tensor<(Any, 3, 32, 32), fp32>

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Any in operator type relation

Describe the type relation between inputs and outputs

12

arange: fn(start:fp32, stop:fp32, step:fp32)
-> Tensor<(Any), fp32>

broadcast: fn(Tensor<(Any, Any), fp32>,
Tensor<(1, 8), fp32>)

-> Tensor<(Any, 8), fp32>

Valid only when Any = 1 or 8

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

How to infer the shape at runtime?

• Instrument shape functions in the program
o Calculate the output shape

o Perform the type checking

• Advantages of shape function:

o Low overhead at runtime

o Treat as regular ops and apply optimization

o Generate shape functions for fused ops

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Compiler

Nimble: compile and execute dynamic models

Dynamic Type Inference

Dynamic Oriented
Optimization

Symbolic Codegen Nimble executable
o Platform-independent bytecode
o Platform-dependent kernels

Runtime

VM-based runtime

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Problem in memory planning

Existing deep learning compilers don’t encode memory
allocation in IRs

• Memory planning coupled with runtime

• Complicated under heterogeneous execution

• Don’t support dynamic memory allocation

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Approach for memory planning

Explicitly manifest the memory allocation in the program
• Perform optimization such as liveness analysis, device placement

• No runtime modification and negligible runtime overhead

Introduce new IR nodes
• invoke_mut

• alloc_storage

• alloc_tensor

• kill

16

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Example 1: Manifest the memory allocation
(static shape)

fn main(t1, t2: Tensor<10>) -> Tensor<10> {

add(t1, t2)

}

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Example 1: Manifest the memory allocation
(static shape)

fn main(t1, t2: Tensor<10>) -> Tensor<10> {
let buf = alloc_storage(size=40);
let out = alloc_tensor(buf, offset=0, shape=(10), dtype=f32);
add(t1, t2)

}

1. Explicit allocate output buffer

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Example 1: Manifest the memory allocation
(static shape)

fn main(t1, t2: Tensor<10>) -> Tensor<10> {
let buf = alloc_storage(size=40);
let out = alloc_tensor(buf, offset=0, shape=(10), dtype=f32);
invoke_mut(add, (t1, t2), (out));
out

}

2. Update the kernel call with explicit
output buffer

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Example 2: Manifest the memory allocation
(dynamic shape)

fn (x: Tensor<?,2>, y: Tensor<1,2>)->Tensor<?,2> {

concat((x, y))

}

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Example 2: Manifest the memory allocation
(dynamic shape)

fn (x: Tensor<?,2>, y: Tensor<1,2>)->Tensor<?,2> {
let xshape = shape_of(x);
let yshape = shape_of(y);

concat((x, y))

}

1. Extract the shape from tensors

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Example 2: Manifest the memory allocation
(dynamic shape)

fn (x: Tensor<?,2>, y: Tensor<1,2>)->Tensor<?,2> {
let xshape = shape_of(x);
let yshape = shape_of(y);

invoke_shape_func(concat, (xshape, yshape), (oshape), ...);

concat((x, y))

}

2. Compute the output shape using
shape function

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Example 2: Manifest the memory allocation
(dynamic shape)

fn (x: Tensor<?,2>, y: Tensor<1,2>)->Tensor<?,2> {
let xshape = shape_of(x);
let yshape = shape_of(y);

invoke_shape_func(concat, (xshape, yshape), (oshape), ...);
let buf1 = alloc_storage(size=oshape);
let out = alloc_tensor(buf1, oshape, ...);
concat((x, y))

}

3. Allocate the output buffer using the
calculated output shape

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Example 2: Manifest the memory allocation
(dynamic shape)

fn (x: Tensor<?,2>, y: Tensor<1,2>)->Tensor<?,2> {
let xshape = shape_of(x);
let yshape = shape_of(y);

invoke_shape_func(concat, (xshape, yshape), (oshape), ...);
let buf1 = alloc_storage(size=oshape);
let out = alloc_tensor(buf1, oshape, ...);
invoke_mut(concat, (x, y), (out));
out

}

4. Update the kernel call with explicit
output buffers

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Example 2: Manifest the memory allocation
(dynamic shape)

fn (x: Tensor<?,2>, y: Tensor<1,2>)->Tensor<?,2> {
let xshape = shape_of(x);
let yshape = shape_of(y);
let buf0 = alloc_storage(size=16);
let oshape = alloc_tensor(buf0, ...);
invoke_shape_func(concat, (xshape, yshape), (oshape), ...);
let buf1 = alloc_storage(size=oshape);
let out = alloc_tensor(buf1, oshape, ...);
invoke_mut(concat, (x, y), (out));
out

}

5. Manifest memory allocation for
shape functions

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Which device to place each buffer?

fn (x: Tensor<?,2>, y: Tensor<1,2>)->Tensor<?,2> {
let xshape = shape_of(x);
let yshape = shape_of(y);
let buf0 = alloc_storage(size=16, device=?);
let oshape = alloc_tensor(buf0, ...);
invoke_shape_func(concat, (xshape, yshape), (oshape), ...);
let buf1 = alloc_storage(size=oshape, device=?);
let out = alloc_tensor(buf1, oshape, ...);
invoke_op(concat, (x, y), (out));
out

}

CPU

GPU

Use constraints and union-find algorithm

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Compiler

Nimble: compile and execute dynamic models

Dynamic Type Inference

Dynamic Oriented
Optimization

Symbolic Codegen Nimble executable
o Platform-independent bytecode
o Platform-dependent kernels

Runtime

VM-based runtime

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Challenges to symbolic code generation

Symbolic-shaped kernels perform worse than static-
shaped kernels.

How to tune kernels with symbolic shapes?

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Challenges to symbolic code generation

Symbolic-shaped kernels perform worse than static-
shaped kernels.

How to tune kernels with symbolic shapes?

• Loop tiling + parallelism à boundary check in the loop body

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Challenges to symbolic code generation

Symbolic-shaped kernels perform worse than static-
shaped kernels.

How to tune kernels with symbolic shapes?

• Loop tiling + parallelism à boundary check in the loop body
q Generate multiple kernels based on the tiling factor
q Use symbolic simplifier to remove the boundary check
q Dispatch to a corresponding kernel at runtime

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Tuning for symbolic shape

1. Tune the kernel after replacing the symbolic dims by a
large value (e.g., 64, 128)

2. Pick top k configurations, and evaluate the
performance on other shapes

3. Pick the configuration that performs best on average
among shapes previously evaluated

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Nimble: compile and execute dynamic models

Compiler

Nimble executable
o Platform-independent bytecode
o Platform-dependent kernels

Runtime

VM-based runtimeDynamic Type Inference

Dynamic Oriented
Optimization

Symbolic Codegen

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Nimble executable

Dynamic IR

Trained model

VM Object (hardware independent)

Bytecode
VM Func 0
VM Func 1

...
VM Func N

Data
Const 0
Const 1

...
Const K

Kernel lib (hardware
dependent)

Kernel 0

Kernel 1

...

Kernel M

Optimization

export
Executable

VM Executor

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Tensor-oriented CISC-style VM ISA
Instruction Description
Move Moves data from one register to another.
Ret Returns the object in register result to caller’s register.
Invoke Invokes a function at in index.
InvokeClosure Invokes a Relay closure.
InvokePacked Invokes a TVM compiled kernel.
AllocStorage Allocates a storage block.
AllocTensor Allocates a tensor value of a certain shape.
AllocTensorReg Allocates a tensor based on a register.
AllocDatatype Allocates a data type using the entries from a register.
AllocClosure Allocates a closure with a lowered virtual machine function.
If Jumps to the true or false offset depending on the condition.
Goto Unconditionally jumps to an offset.
LoadConst Loads a constant at an index from the constant pool.
DeviceCopy Copies a chunk of data from one device to another.

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Evaluation

What is the overall performance?

How much overhead does Nimble introduce for handling
dynamism?

How effective are the proposed optimization techniques?

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Evaluation

What is the overall performance?

How much overhead does Nimble introduce for handling
dynamism?

How effective are the proposed optimization techniques?

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Evaluation Setup

Models
• LSTM (control flow), Tree-LSTM (dynamic data structure), BERT (dynamic

input shapes)

Dataset
• MRPC for LSTM and BERT, Stanford Sentiment Treebank for Tree-LSTM

EC2 instances
• c5.9xlarge (Intel CPU), g4dn.4xlarge (Nvidia GPU), a1.4xlarge (ARM CPU)

Compare to MXNet, PyTorch, DyNet, TensorFlow, TF Fold

Use batch = 1 for all cases

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Evaluation: LSTM models

Unit:
us/token

1 layer 2 layers

Intel Nvidia ARM Intel Nvidia ARM

Nimble 47.8 54.6 182.2 97.2 107.4 686.4

PyTorch 2.2x 1.5x 15.0x 2.3x 1.5x 8.5x

DyNet 19.6x 1.3x 31.3x 24.2x 1.3x 18.7x

MXNet 4.5x 2.5x 20.3x 4.1x 2.1x 11.3x

TensorFlow 6.3x 5.6x 5.4x 7.1x 3.8x 3.2x

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Evaluation: Tree-LSTM and BERT

Intel ARM

Nimble 40.3 86.3

PyTorch 17.4x 19.9x

DyNet 2.4x 3.6x

TF Fold 5.2x -

Intel Nvidia ARM

Nimble 307.0 95.2 2862.6

PyTorch 1.6x 2.3x 4.1x

MXNet 1.5x 1.6x 3.0x

TensorFlow 2.5x 1.3x 1.05x

Tree-LSTM latency (us/token) BERT latency (us/token)

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Nimble overhead compared to static compiler

Device TVM
lat. (ms)

Nimble
lat. (ms)

Kernel lat.
(ms)

Others
(ms)

Intel 19.4 24.3 21.1 3.26

ARM 223.5 237.4 228.6 8.82

Nvidia 5.6 5.9 5.6 0.26

BERT with sequence length 128

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Conclusion

• Nimble compiles and optimizes neural networks with
dynamism

• We design and implement a lightweight and portable
VM-based runtime

• Nimble lowers the latency by up to 30x compared to
baseline on multiple hardware platforms.

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Thank you

