aWws OctoML w

Nimble: Efficiently Compiling Dynamic
Neural Networks for Model Inference

Haichen Shen*, Jared Roesch*, Zhi Chen, Wei Chen, Yong Wu,
Mu Li, Vin Sharma, Zachary Tatlock, Yida Wang

DNN models are exhibiting more dynamism

LSTM
| — Seme-
|]

Dynamic input size Control flow Dynamic output shapes
aws

N

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Dynamic model inference is an important workload

) Russian

CKONbKO CTOAT 6MneThbi?
Skolko stoyat bilety?

Personalized feed
based &a the videos hal yeu like

Smart speaker Translation Recommendation

adWws

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Existing approaches to handle dynamism

1. Extend the representation: TensorFlow, MXNet
2. Rely on the host language: PyTorch, DyNet

3. Optimization for frameworks: TF Fold, JANUS
Limitation for inference

X Too heavyweight for model inference

X Lack portability: third-party libraries or Python

X Optimization doesn’'t apply to all types of models
adWws

, Amazon Web Services, Inc. or its Affiliates. All rights reserved

Deep learning compilers are promising for model
inference

XLA: Optimizing Compiler for Ma Glow: Graph Lowering Compiler Techniques for
Neural Networks

XLA (Accelerated Linear Algebra) is a domain-specific compiler for

. . Nadav Rotem, Jordan Fix, Saleem Abdulrasool, Garret Catron, Summer Deng,
with potentially no source code changes.

Roman Dzhabarov. Nick Gibson. James Hegeman. Meghan Lele. Roman Levenstein,

The results are improvements in speed and memory usage: most ir 4

en MLIR: A Compiler Infrastructure for the End of
TVM: An Automated End-to-End Optimmzing Moore’s Law r—

Tiangi Chen!, Thierry Moreau!, Ziheng Jiang!-2, Lia
Chris Lattner * Mehdi Amini Uday Bondhugula Albert Cohen Andy Davis
Meghan Cowan!, Haichen Shen!, Leyuan Wang*2, Yuwei Hu®, Luis Cez Google Google IISc Google Google
!Paul G. Allen School of Computer Science & Engineerir

Jacques Pienaar River Riddle Tatiana Shpeisman Nicolas Vasilache
2 AWS, 3Shanghai Jiao Tong University, *UC Google Google Google Google
1 Oleksandr Zinenko
QOO IC

But none of them fully support dynamic models... aWs

Challenges to support dynamic models

Modelsin“?’ @ O

Intermediate Representation

Optimization

Code generation

A 4

Runtime

adWws

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Modelsin“? @ O

Intermediate Representation

Optimization

Code generation

A

Runtime

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Challenges to support dynamic models

Dynamic type inference

Memory planning

Codegen for symbolic shapes

Dynamic model execution

adWws

Nimble: compile and execute dynamic models

| | |
1 | I
| | |
| | |
1 | I
| | |
| | J
| I

I |

I |

: : Nimble executable

: : |:> o Platform-independent bytecode

I | o Platform-dependent kernels

I |

N/
© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Nimble: compile and execute dynamic models

Dynamic Type Inference

Compiler

adWws

Any: typing dynamic dimension

Any: an unknown dimension at compilation time

Define a tensor type:

Tensor<(Any, 3, 32, 32), fp32>

adWws

Any in operator type relation

Describe the type relation between inputs and outputs

arange: fn(start:fp32, stop:fp32, step:fp32)
-> Tensor<(Any), fp32>

broadcast: fn(Tensor<(Any, /Any), fp32>,
Tensor<(1, 8)|, fp32>)
-> Tensor<(Any, 8), fp32>

Valid only when Any =1 or 8

adWws

12

How to infer the shape at runtime?

- Instrument shape functions in the program
o Calculate the output shape
o Perform the type checking

- Advantages of shape function:

o Low overhead at runtime
o Treat as regular ops and apply optimization

o Generate shape functions for fused ops

adWws

Nimble: compile and execute dynamic models

Dynamic Oriented

Optimization ﬁ

Compiler

adWws

Problem in memory planning

Existing deep learning compilers don't encode memory
allocation in IRs

« Memory planning coupled with runtime

« Complicated under heterogeneous execution

* Don't support dynamic memory allocation

adWws

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Approach for memory planning

Explicitly manifest the memory allocation in the program
» Perform optimization such as liveness analysis, device placement

* No runtime modification and negligible runtime overhead

Introduce new IR nodes

e invoke_mut
« alloc_storage
e alloc_tensor

« kill

adWs
16

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Example 1: Manifest the memory allocation
(static shape)

fn main(t1, t2: Tensor<10>) -> Tensor<10> {

add(t1, t2)

adWws

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Example 1: Manifest the memory allocation
(static shape)

fn main(t1, t2: Tensor<10>) -> Tensor<10> {

let buf = alloc_storage(size=40);
let out = alloc_tensor(buf, offset=0, shape=(10), dtype=f32);
add(t1, t2)

1. Explicit allocate output buffer

adWws

Example 1: Manifest the memory allocation
(static shape)

fn main(t1, t2: Tensor<10>) -> Tensor<10> {
let buf = alloc_storage(size=40);
let out = alloc_tensor(buf, offset=0, shape=(10), dtype=f32);
invoke_mut(add, (t1, t2), (out));
out

}

2. Update the kernel call with explicit
output buffer

adWws

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Example 2: Manifest the memory allocation
(dynamic shape)

fn (x: Tensor<?,2>, y: Tensor<1,2>)->Tensor<?,2> {

concat((x, y))

adWws

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Example 2: Manifest the memory allocation
(dynamic shape)

fn (x: Tensor<?,2>, y: Tensor<1,2>)->Tensor<?,2> {
let xshape = shape_of(x);
let yshape = shape_of(y);

concat((x, y))

1. Extract the shape from tensors

adWws

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Example 2: Manifest the memory allocation
(dynamic shape)

fn (x: Tensor<?,2>, y: Tensor<1,2>)->Tensor<?,2> {
let xshape = shape_of(x);
let yshape = shape_of(y);

invoke_shape_func(concat, (xshape, yshape), (oshape), ...);

concat((x, y))

2. Compute the output shape using
shape function
aws

Example 2: Manifest the memory allocation
(dynamic shape)
fn (x: Tensor<?,2>, y: Tensor<1,2>)->Tensor<?,2> {

let xshape = shape_of(x);
let yshape = shape_of(y);

invoke_shape_func(concat, (xshape, yshape), (oshape), ...);
let buf1 = alloc_storage(size=oshape);
let out = alloc_tensor(buf1, oshape, ...);
concat((x, y))
}

3. Allocate the output buffer using the
calculated output shape
aws

Example 2: Manifest the memory allocation
(dynamic shape)
fn (x: Tensor<?,2>, y: Tensor<1,2>)->Tensor<?,2> {

let xshape = shape_of(x);
let yshape = shape_of(y);

invoke_shape_func(concat, (xshape, yshape), (oshape), ...);
let buf1l = alloc_storage(size=oshape);

let out = alloc_tensor(buf1, oshape, ...);
invoke_mut(concat, (x, y), (out));

out

4. Update the kernel call with explicit
output buffers

adWws

Example 2: Manifest the memory allocation
(dynamic shape)

fn (x: Tensor<?,2>, y: Tensor<1,2>)->Tensor<?,2> {
let xshape = shape_of(x);
let yshape = shape_of(y);
let buf® = alloc_storage(size=16);
let oshape = alloc_tensor(bufd, ...);

invoke_shape_func(concat, (xshape, yshape), (oshape), ...);
let buf1l = alloc_storage(size=oshape);
let out = alloc_tensor(buf1, oshape, ...);
invoke_mut(concat, (x, y), (out));
out

b

5. Manifest memory allocation for
shape functions

adWws

Which device to place each buffer?

fn (x: Tensor<?,2>, y: Tensor<1,2>)->Tensor<?,2> {
let xshape = shape_of(x);
let yshape = shape_of(y);
let buf@ = alloc_storage(size=16, device=f);

let oshape = alloc_tensor(bufe, ...);

invoke_shape_func(concat, (xshape, yshape), (oshape), ...);
let buf1l = alloc_storage(size=oshape, device=f{);

let out = alloc_tensor(buf1, oshape, ...);

invoke_op(concat, (x, y), (out));

out

Use constraints and union-find algorithm

adWws

Nimble: compile and execute dynamic models

Symbolic Codegen

Compiler

adWws

Challenges to symbolic code generation

Symbolic-shaped kernels perform worse than static-
shaped kernels.

How to tune kernels with symbolic shapes?

adWws

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Challenges to symbolic code generation

Symbolic-shaped kernels perform worse than static-
shaped kernels.
» Loop tiling + parallelism - boundary check in the loop body

How to tune kernels with symbolic shapes?

adWws

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Challenges to symbolic code generation

Symbolic-shaped kernels perform worse than static-
shaped kernels.

» Loop tiling + parallelism - boundary check in the loop body

O Generate multiple kernels based on the tiling factor

O Use symbolic simplifier to remove the boundary check
O Dispatch to a corresponding kernel at runtime

How to tune kernels with symbolic shapes?

adWws

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Tuning for symbolic shape

1. Tune the kernel after replacing the symbolic dims by a
large value (e.qg., 64, 128)

2. Pick top k configurations, and evaluate the
performance on other shapes

3. Pick the configuration that performs best on average
among shapes previously evaluated

adWws

Nimble: compile and execute dynamic models

VM-based runtime

Runtime

sh)

Nimble executable

|:> o Platform-independent bytecode
o Platform-dependent kernels

adWws

Nimble executable

Gained mocD

Dynamic IR

]

Optimization

]

export

VM Object (hardwar
_ T T TN
(Bytecode |(
q vvrinco W

VM Func 1 JIL

e independent)

Data
Const O

Executable

v

VM Executor

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Kernel lib (hardware
dependent)

Kernel O

Kernel 1

Kernel M

adWws

\/‘7

Tensor-oriented CISC-style VM ISA

Instruction Description

Move Moves data from one register to another.
Ret Returns the object in register result to caller’s register.
Invoke Invokes a function at in index.

InvokeClosure

Invokes a Relay closure.

InvokePacked

Invokes a TVM compiled kernel.

AllocStorage

Allocates a storage block.

AllocTensor

Allocates a tensor value of a certain shape.

AllocTensorReg

Allocates a tensor based on a register.

AllocDatatype

Allocates a data type using the entries from a register.

AllocClosure

Allocates a closure with a lowered virtual machine function.

If

Jumps to the true or false offset depending on the condition.

Goto

Unconditionally jumps to an offset.

LoadConst

Loads a constant at an index from the constant pool.

DeviceCopy

Copies a chunk of data from one device to another.

adWws

Evaluation

What is the overall performance?

How much overhead does Nimble introduce for handling
dynamism?

How effective are the proposed optimization techniques?

adWws

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Evaluation

What is the overall performance?

How much overhead does Nimble introduce for handling
dynamism?

adWws

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Evaluation Setup

Models

e LSTM (control flow), Tree-LSTM (dynamic data structure), BERT (dynamic
input shapes)

Dataset
« MRPC for LSTM and BERT, Stanford Sentiment Treebank for Tree-LSTM

EC2 instances
» c¢5.9xlarge (Intel CPU), g4dn.4xlarge (Nvidia GPU), a1.4xlarge (ARM CPU)

Compare to MXNet, PyTorch, DyNet, TensorFlow, TF Fold
Use batch = 1 for all cases

adWws

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Evaluation: LSTM models

Uit

Sl ntel Nvidia ARM Intel Nvidia ARM

Nimble 47.8 54.6 182.2 97.2 107.4 686.4
PyTorch 2.2X 1.5x 15.0x 2.3X 1.5x 8.5x
DyNet 19.6x 1.3x 31.3x 24.2x 1.3X 18.7x
MXNet 4.5x 2.5x 20.3x 4.1x 2.1x 11.3x

TensorFlow 6.3X 5.6x 5.4x 7.1x 3.8x 3.2X

adWws

Evaluation: Tree-LSTM and BERT

EEETErT BT

Nimble 40.3 86.3 Nimble 307.0 95.2 2862.6
PyTorch 17.4x 19.9x PyTorch 1.6x 2.3X 4.1x

DyNet 2.4x 3.6x MXNet 1.5x 1.6x 3.0x
TF Fold 5.2X - TensorFlow 2.5x 1.3x 1.05x
Tree-LSTM latency (us/token) BERT latency (us/token)

adWws

Nimble overhead compared to static compiler

Device TVM Nimble Kernel lat. Others
lat. (ms) lat. (ms) (ms) (ms)
Intel 19.4 24.3 211 3.26
ARM 223.5 237 .4 228.6 8.82
Nvidia 5.6 5.9 5.6 0.26

BERT with sequence length 128

adWws

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Conclusion
* Nimble compiles and optimizes neural networks with
dynamism

« We design and implement a lightweight and portable
VM-based runtime

* Nimble lowers the latency by up to 30x compared to
baseline on multiple hardware platforms.

adWws

Thank you

adWws

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

