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…but how do I 
compile to it?
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Building backends is hard, even 
for compiler engineers!
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Given so much detail about how the 
hardware functions, could a compiler 

map to it automatically?
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Hardware mapping is a 
program rewriting problem!



…but current IRs are not up 
to the task.





Three requirements for a hardware mapping IR:



Three requirements for a hardware mapping IR:

1. The language must be pure, enabling equational reasoning in term rewriting.



Three requirements for a hardware mapping IR:

1. The language must be pure, enabling equational reasoning in term rewriting.

2. The language must be low-level, letting us reason about hardware.



Three requirements for a hardware mapping IR:

1. The language must be pure, enabling equational reasoning in term rewriting.

2. The language must be low-level, letting us reason about hardware.

3. The language must not use binding, making term rewriting much easier.



Three requirements for a hardware mapping IR:

1. The language must be pure, enabling equational reasoning in term rewriting.

2. The language must be low-level, letting us reason about hardware.

3. The language must not use binding, making term rewriting much easier.

Binding structures—such as lambdas—provide expressiveness.



Three requirements for a hardware mapping IR:

1. The language must be pure, enabling equational reasoning in term rewriting.

2. The language must be low-level, letting us reason about hardware.

3. The language must not use binding, making term rewriting much easier.

Binding structures—such as lambdas—provide expressiveness.

However, they are difficult to deal with in term rewriting: for example, rewrites 
must explicitly ensure that they do not introduce name conflicts. 



Three requirements for a hardware mapping IR:

1. The language must be pure, enabling equational reasoning in term rewriting.

2. The language must be low-level, letting us reason about hardware.

3. The language must not use binding, making term rewriting much easier.

Binding structures—such as lambdas—provide expressiveness.

However, they are difficult to deal with in term rewriting: for example, rewrites 
must explicitly ensure that they do not introduce name conflicts. 

Thus, we seek to avoid using binding altogether!
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Three examples of IRs from TVM:

Pure? Low-level? Can avoid 
binding?

Relay ✅ ❌ ✅

TE ✅ ✅ ❌

TIR ❌ ✅ ❌

Current tensor IRs fall short on our requirements!
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We present our core abstraction, access patterns.

Around them, we design Glenside, a pure, low-level, 
binder-free tensor IR.

Finally, we demonstrate how Glenside enables  low-level 
tensor program rewriting.
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We want to represent matrix multiplication in a way that

1. is pure,

2.  is low-level, and

3.  avoids binding.



Given matrices A and B, pair each 
row of A with each column of B, 
compute their dot products, and 

arrange the results back into a matrix.
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But there’s a problem!
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Cartesian product destroys 
our shape information!



[ , ]×2D[ , , ]

We introduce a new 
Cartesian product 

operator
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dimension!
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Shape information is 
preserved!
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×2D and map2D hard-code which dimensions are iterated over and 
which dimensions are computed on…

…but if tensor shapes change, we’ll need entirely new operators!

Can we encode this in the tensor itself?

(Yes! This is what access patterns do!)
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A 3-length vector of 
4-length vectors

A (3,4)-shaped tensor 
of scalars

An access pattern looks like…
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((), (3,4))

access dimensions 
(iterated over)

compute dimensions 
(computed on)

A 3-length vector of 4-
length vectors

A scalar-shaped tensor 
of a single (3,4)-
shaped tensor

An access pattern looks like…
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Same tensor, three possible views!Same tensor, three possible views!Same tensor, three possible views!



We can redefine common tensor and list operators with access pattern 
semantics, which gives us the Glenside IR—details in paper!
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Given matrices A and B, pair each 
row of A with each column of B, 
compute their dot products, and 

arrange the results back into a matrix.
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;   ((4), (2))
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Compute dot product of every row–column pair 
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[
[

One output channel for each input filter
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window shape and strides
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We can directly rewrite  to hardware invocations!
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(systolicArray ?rows ?cols ?a0 ?a1)



Outline

• Motivating Example: Matrix Multiplication

• Access Pattern Definition

• Case Studies
- Reimplementing Matrix Multiplication with Access Patterns
- Implementing 2D Convolution with Access Patterns
- Hardware Mapping as Program Rewriting
- Flexible Hardware Mapping with Equality Saturation



(transpose                  

 (squeeze                   

  (compute dotProd          

   (cartProd                

    (windows                

     (access activations 1) 

     (shape C Kh Kw) 

     (shape 1 Sh Sw)) 

    (access weights 1)))    

  1) 

 (list 0 3 1 2))

(compute dotProd 

 (cartProd               

  (access A 1) 

  (transpose             

   (access B 1)    

   (list 1 0))))



(transpose                  

 (squeeze                   

  (compute dotProd          

   (cartProd                

    (windows                

     (access activations 1) 

     (shape C Kh Kw) 

     (shape 1 Sh Sw)) 

    (access weights 1)))    

  1) 

 (list 0 3 1 2))

(compute dotProd 

 (cartProd               

  (access A 1) 

  (transpose             

   (access B 1)    

   (list 1 0))))

A 3-length vector of 4-length 
vectors

Convolution and matrix 
multiplication have similar 

structure!
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Can we apply our hardware rewrite?
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; ((O), (C, Kh, Kw)) Our access pattern shapes do not 
pass the rewrite’s conditions
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Can we flatten our access patterns?
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But our access pattern shapes haven’t changed!
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We need to “bubble” the reshapes to the top



(cartProd 
 (reshape ?a0 ?shape0) 
 (reshape ?a1 ?shape1)) → (reshape (cartProd ?a0 ?a1) ?newShape)

(compute dotProd  
 (reshape ?a ?shape))   → (reshape (compute dotProd ?a) ?newShape)

These rewrites “bubble” reshape through cartProd and compute dotProd
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 (squeeze                   

  (compute dotProd          

   (cartProd                

    (reshape (flatten (windows                

     (access activations 1) 

     (shape C Kh Kw) 

     (shape 1 Sh Sw))) ?shape0) 

    (reshape (flatten (access weights 1)) ?shape1)))    

  1) 

 (list 0 3 1 2))

; ((N, 1, H’, W’), (C, Kh, Kw))

; ((O), (C, Kh, Kw))



(transpose                  

 (squeeze                   

  (reshape (compute dotProd          

   (cartProd                

    (flatten (windows                

     (access activations 1) 

     (shape C Kh Kw) 

     (shape 1 Sh Sw))) 

    (flatten (access weights 1)))) ?shape)   

  1) 

 (list 0 3 1 2))

; ((N · 1 · H’ · W’), (C · Kh · Kw))

; ((O), (C · Kh · Kw))

reshapes have been moved out, and the access patterns are flattened!



(transpose                  

 (squeeze                   

  (reshape (compute dotProd          

   (cartProd                

    (flatten (windows                

     (access activations 1) 

     (shape C Kh Kw) 

     (shape 1 Sh Sw))) 

    (flatten (access weights 1)))) ?shape)   

  1) 

 (list 0 3 1 2))

; ((N · 1 · H’ · W’), (C · Kh · Kw))

; ((O), (C · Kh · Kw))

(compute dotProd 
 (cartProd ?a0 ?a1)) 

  where ?a0 is of shape  
   ((?n), (?rows)) 

  and ?a1 is of shape 
   ((?cols), (?rows)) 

Our rewrite can now map 
convolution to matrix 

multiplication hardware!



(cartProd 
 (reshape ?a0 ?shape0) 
 (reshape ?a1 ?shape1)) → (reshape (cartProd ?a0 ?a1) ?newShape)

(compute dotProd  
 (reshape ?a ?shape))   → (reshape (compute dotProd ?a) ?newShape)

?a → (reshape (flatten ?a) ?shape)

These rewrites rediscover the im2col transformation!





In conclusion,
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In conclusion,

we have presented access patterns as a new tensor representation,

we have used them to build the pure, low-level, binder free IR Glenside, 

and have shown how they enable hardware-level tensor program rewriting.



https://github.com/gussmith23/glenside
Glenside is an actively maintained Rust library! Try it 

out and open issues if you have questions!

https://github.com/gussmith23/glenside




Thank you!


