Pure Tensor Program Rewriting via Access Patterns

Gus Henry Smith, Andrew Liu, Steven Lyubomirsky, Scott Davidson, Joseph McMahan, Michael Taylor, Luis Ceze, Zachary Tatlock

University of Washington
10

It reads an entire weight array of shape rows by cols.

It reads an entire weight array
of shape rows by cols.

It reads an entire weight array
of shape rows by cols.

nevm

© PyTorch

sitvm

 Building backends is hard, even for compiler engineers!

尾

Can we compile her description of the hardware into a pattern, and search the workload for this pattern?

1

Can we compile her description of the hardware into a pattern, and search the workload for this pattern?

1

Can we compile her description of the hardware into a pattern, and search the workload for this pattern?

1

Hardware mapping is a program rewriting problem!

...but current IRs are not up to the task.

Three requirements for a hardware mapping IR:

Three requirements for a hardware mapping IR:

1. The language must be pure, enabling equational reasoning in term rewriting.

Three requirements for a hardware mapping IR:

1. The language must be pure, enabling equational reasoning in term rewriting.
2. The language must be low-level, letting us reason about hardware.

Three requirements for a hardware mapping IR:

1. The language must be pure, enabling equational reasoning in term rewriting.
2. The language must be low-level, letting us reason about hardware.
3. The language must not use binding, making term rewriting much easier.

Three requirements for a hardware mapping IR:

3. The language must not use binding, making term rewriting much easier.

Three requirements for a hardware mapping IR:

3. The language must not use binding, making term rewriting much easier.

Three requirements for a hardware mapping IR:

3. The language must not use binding, making term rewriting much easier.

Three examples of IRs from TVM:

$$
\text { Pure? Low-level? } \quad \begin{gathered}
\text { Can avoid } \\
\text { binding? }
\end{gathered}
$$

Three examples of IRs from TVM:
Pure? Low-level? Can avoid

Three examples of IRs from TVM:
Pure? Low-level? Can avoid

Relay	∇	x	∇
TE	∇	∇	x

Three examples of IRs from TVM:

Pure? Low-level? \quad| Can avoid |
| :---: |
| binding? |

Relay	∇	x	∇
TE	∇	∇	x
TIR	\times	∇	x

Three examples of IRs from TVM:

	Pure?	Low-level?	Can avoid binding?
Relay	∇	\times	∇
TE	∇	∇	\times
TIR	\times	∇	\times

Three examples of IRs from TVM:

© PyTorch

We present our core abstraction, access patterns.

We present our core abstraction, access patterns.
Around them, we design Glenside, a pure, low-level, binder-free tensor IR.

We present our core abstraction, access patterns.
Around them, we design Glenside, a pure, low-level, binder-free tensor IR.

Finally, we demonstrate how Glenside enables low-level tensor program rewriting.

Outline

- Motivating Example: Matrix Multiplication
- Access Pattern Definition
- Case Studies
- Reimplementing Matrix Multiplication with Access Patterns
- Implementing 2D Convolution with Access Patterns
- Hardware Mapping as Program Rewriting
- Flexible Hardware Mapping with Equality Saturation

Outline

- Motivating Example: Matrix Multiplication
- Access Pattern Definition
- Case Studies
- Reimplementing Matrix Multiplication with Access Patterns
- Implementing 2D Convolution with Access Patterns
- Hardware Mapping as Program Rewriting
- Flexible Hardware Mapping with Equality Saturation

We want to represent matrix multiplication in a way that

We want to represent matrix multiplication in a way that

1. is pure,

We want to represent matrix multiplication in a way that

1. is pure,
2. is low-level, and

We want to represent matrix multiplication in a way that

1. is pure,
2. is low-level, and
3. avoids binding.

Given matrices A and B, pair each row of A with each column of B, compute their dot products, and arrange the results back into a matrix.

$$
\begin{aligned}
& \text { ■!-! }
\end{aligned}
$$

But there's a problem!

 (
π

$$
\begin{aligned}
& \text { (} \\
& \text { (}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 日明 - }
\end{aligned}
$$

(4)
(4)

$$
\begin{aligned}
& \text { (}
\end{aligned}
$$

$$
\begin{aligned}
& \text { ■■ ■■ ■ }
\end{aligned}
$$

Cartesian product destroys our shape information!

 2D Cartesian product operator preserves shape info [([(

map dotProd

$$
\begin{aligned}
& \text { [(}
\end{aligned}
$$

map2D dotProd

$$
\begin{aligned}
& \text { ((f, }
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{llll}
{[\square} & \square &], \\
{[\square,} & \square &], \\
{[\square} & \square & \square
\end{array}\right]}
\end{aligned}
$$

$\times_{2 D}$ and map2D hard-code which dimensions are iterated over and which dimensions are computed on...
$x_{2 D}$ and map2D hard-code which dimensions are iterated over and which dimensions are computed on...
...but if tensor shapes change, we'll need entirely new operators!
$\times_{2 D}$ and map2D hard-code which dimensions are iterated over and which dimensions are computed on...
...but if tensor shapes change, we'll need entirely new operators!

Can we encode this in the tensor itself?
$x_{2 D}$ and map2D hard-code which dimensions are iterated over and which dimensions are computed on...
...but if tensor shapes change, we'll need entirely new operators!

Can we encode this in the tensor itself?
(Yes! This is what access patterns do!)

Outline

- Motivating Example: Matrix Multiplication
- Access Pattern Definition
- Case Studies
- Reimplementing Matrix Multiplication with Access Patterns
- Implementing 2D Convolution with Access Patterns
- Hardware Mapping as Program Rewriting
- Flexible Hardware Mapping with Equality Saturation

A tensor looks like...

$(3,4)$

An access pattern looks like...

An access pattern looks like...

access dimensions
(iterated over)
((3), (4))

An access pattern looks like...

access dimensions
(iterated over)

((3), (4))
\uparrow
compute dimensions (computed on)

An access pattern looks like...

An access pattern looks like...

access dimensions
(iterated over)

$((3,4),())$
\uparrow
compute dimensions (computed on)

An access pattern looks like...

An access pattern looks like...

access dimensions
(iterated over)

((), $(3,4))$

compute dimensions (computed on)

An access pattern looks like...

Table 1. Glenside's access pattern transformers.

Outline

- Motivating Example: Matrix Multiplication
- Access Pattern Definition
- Case Studies
- Reimplementing Matrix Multiplication with Access Patterns
- Implementing 2D Convolution with Access Patterns
- Hardware Mapping as Program Rewriting
- Flexible Hardware Mapping with Equality Saturation

Outline

- Motivating Example: Matrix Multiplication
- Access Pattern Definition
- Case Studies
- Reimplementing Matrix Multiplication with Access Patterns
- Implementing 2D Convolution with Access Patterns
- Hardware Mapping as Program Rewriting
- Flexible Hardware Mapping with Equality Saturation

Given matrices A and B, pair each row of A with each column of B, compute their dot products, and arrange the results back into a matrix.
(access A 1) ; ((3), (4))

Access A as a list of its rows
(access A 1)
; ((3), (4))
(access A 1) ; ((3), (4))
(access B 1) ; ((4), (2))
(access A 1)
(transpose
(access B 1)
(list 1 0))
(access A 1)
(transpose
(access B 1)
; ((3), (4))
; ((2), (4)) ; ((4), (2))
(list 1 0))
(cartProd
(access A 1)
(transpose
(access B 1)
(list 1 0)))
((3, 2), (2, 4))
((3), (4))
((2), (4))
((4), (2))
(cartProd
(access A 1)
(transpose
(access B 1)
(list 1 0)))
((3, 2), (2, 4)) ((3), (4)) ((2), (4)) ((4), (2))
(compute dotProd
(cartProd
(access A 1)
(transpose
(access B 1)
(list 1 0))))
(compute dotProd
(cartProd
(access A 1)
(transpose
(access B 1)
(list 1 0))))
; ((3, 2), ())
((3, 2), (2, 4))
((3), (4))
((2), (4))
((4), (2))

Outline

- Motivating Example: Matrix Multiplication
- Access Pattern Definition
- Case Studies
- Reimplementing Matrix Multiplication with Access Patterns
- Implementing 2D Convolution with Access Patterns
- Hardware Mapping as Program Rewriting
- Flexible Hardware Mapping with Equality Saturation

Inputs: a batch of image/activation tensors and
a list of weight/filter tensors

Filter and region of image are elementwise multiplied and the results are summed

(access weights 1$) \quad ; \quad\left((\mathrm{O}),\left(\mathrm{C}, \mathrm{K}_{\mathrm{h}}, \mathrm{K}_{\mathrm{w}}\right)\right)$
(access activations 1) ; ((N), (C, H, W))
(access weights 1)
; ((O), (C, $\left.\mathrm{K}_{\mathrm{h}}, \mathrm{K}_{\mathrm{w}}\right)$)
(windows

(access activations 1) ; ((N), (C, H, W))

(access weights 1)
(windows
(access activations 1) ; ((N), (C,H,W))
(shape C Kh Kw) These parameters control
(access weights 1)
; ((O), (C, Kh, Kw))
(windows
(access activations 1)
(shape C Kh Kw)
(shape 1 Sh Sw))
(access weights 1)
; ((N, 1, H', W'), (C, Kh, $\left.\mathrm{K}_{\mathrm{w}}\right)$) ; ((N), (C, H, W))
; ((O), (C, $\left.\mathrm{K}_{\mathrm{h}}, \mathrm{K}_{\mathrm{w}}\right)$)

Pair windows with filters

(cartProd
(windows
(access activations 1)
(shape C Kh Kw)
(shape 1 Sh Sw))
(access weights 1))
; ((N, 1, H', W', O), (2, C, $\left.\left.\mathrm{K}_{\mathrm{h}}, \mathrm{K}_{\mathrm{w}}\right)\right)$
; ((N, 1, H', W'), (C, Kh, $\left.\left.K_{w}\right)\right)$; ((N), (C, H, W))

Compute dot product of each window-filter pair

(compute dotProd
; ((N, 1, H', W', O), ())
(cartProd
(windows
(access activations 1)
; ((N, 1, H', W', O), (2, C, Kh, Kw))
; ((N, 1, H', W'), (C, Kh, $\left.\left.K_{w}\right)\right)$
(shape C Kh Kw)
(shape 1 Sh Sw))
(access weights 1)))
; ((O), (C, $\left.\left.\mathrm{K}_{\mathrm{h}}, \mathrm{K}_{\mathrm{w}}\right)\right)$(transpose
(compute dotProd
(cartProd
(windows
(access activations 1)
(shape C Kh Kw)
(shape 1 Sh Sw))
(access weights 1)))
1)
; ((N, 1, H', W', O), ())
; ((N, 1, H', W', O), (2, C, $\left.\left.K_{h}, K_{w}\right)\right)$
; ((N, 1, H', W’), (C, Kh, $\left.\left.K_{w}\right)\right)$
; ((N), (C, H, W))
; ((O), (C, $\left.\left.\mathrm{K}_{\mathrm{h}}, \mathrm{K}_{\mathrm{w}}\right)\right)$
(list 0312))

Outline

- Motivating Example: Matrix Multiplication
- Access Pattern Definition
- Case Studies
- Reimplementing Matrix Multiplication with Access Patterns
- Implementing 2D Convolution with Access Patterns
- Hardware Mapping as Program Rewriting
- Flexible Hardware Mapping with Equality Saturation

Can we represent hardware as a searchable pattern?


```
(compute dotProd
    (cartProd ?a0 ?a1))
    where ?a0 is of shape
        ((?n), (?rows))
        \longrightarrow \text { (systolicArray ?rows ?cols ?a0 ?a1)}
    and ?al is of shape
        ((?cols), (?rows))
```

We can directly rewrite to hardware invocations!
(systolicArray ?rows ?cols ?a0 ?a1)
(compute dotProd
(cartProd ?a0 ?a1))
where ?a0 is of shape $((? n),(? r o w s)) \longrightarrow$ (systolicArray ?rows ?cols ?a0 ?a1)
and ?a1 is of shape ((?cols), (?rows))
(compute dotProd
(cartProd
(access A 1)
(transpose
(access B 1)
(list 1 0))))
(compute dotProd

```
(cartProd ?a0 ?a1))
```

 where ?a0 is of shape
 ((?n), (?rows))
 \(\longrightarrow\) (systolicArray ?rows ?cols ?a0 ?a1)
 and ?a1 is of shape
 ((?cols), (?rows))

(compute dotProd

(cartProd

(access A 1)
(transpose
(access B 1)
(list 1 0))))

```
(compute dotProd
    (cartProd ?a0 ?a1))
    where ?a0 is of shape
        ((?n), (?rows))
                            \longrightarrow ~ ( s y s t o l i c A r r a y ~ ? r o w s ~ ? c o l s ~ ? a 0 ~ ? a 1 )
    and ?a1 is of shape
        ((?cols), (?rows))
```


(systolicArray

42
(access A 1)
(transpose
(access B 1)
(list 1 0))))

Outline

- Motivating Example: Matrix Multiplication
- Access Pattern Definition
- Case Studies
- Reimplementing Matrix Multiplication with Access Patterns
- Implementing 2D Convolution with Access Patterns
- Hardware Mapping as Program Rewriting
- Flexible Hardware Mapping with Equality Saturation
(transpose
(squeeze
(compute dotProd
(cartProd
(windows
(access activations 1)
(shape C Kh Kw)
(shape 1 Sh Sw))
(access weights 1)))

1)

(list 0312))
(compute dotProd (cartProd (access A 1)
(transpose (access B 1)
(list 1 0))))

```
(transpose
    (squeeze
(compute dotProd
    (cartProd
        (windows
            (access activations 1)
                (shape C Kh Kw)
                (shape 1 Sh Sw))
            (access weights 1)))
1)
(list 0 3 1 2))
```


(compute dotProd

(cartProd

(access A 1)
(transpose (access B 1) (list 1 0))))

```
(transpose
    (squeeze
    (compute dotProd
        (cartProd
        (windows
                (access activations 1)
                (shape C Kh Kw)
                (shape 1 Sh Sw))
(access weights 1)))
1)
(list 0 3 1 2))
```


Can we apply our hardware rewrite?

(compute dotProd (cartProd ?a0 ?a1)) where ?a0 is of shape ((?n), (?rows))
and ?a1 is of shape ((?cols), (?rows))
(transpose
(squeeze
(compute dotProd
(cartProd
(windows ; ((N, 1, H', W'), (C, Kh, Kw))
(access activations 1)
(shape C Kh Kw)
(shape 1 Sh Sw))
(access weights 1))) ; ((O), (C, Kh, Kw))
1)

```
(compute dotProd
    (cartProd ?a0 ?a1))
    where ?a0 is of shape
        ((?n), (?rows))
        and ?a1 is of shape
        ((?cols), (?rows))
        Our access pattern shapes do not
        pass the rewrite's conditions
```

(list 0312))
(transpose
(squeeze
(compute dotProd
(cartProd
(compute dotProd (cartProd ?a0 ?a1))
(windows ; ((?n), (?rows))
(access activations 1)
where ?a0 is of shape ((?n), (?rows)) (shape C Kh Kw) and ?a1 is of shape (shape 1 Sh Sw)) ((?cols), (?rows)) (access weights 1))) ; ((?cols), (?rows))
1)

Can we flatten our access patterns?
(list 0312))
?a \rightarrow (reshape (flatten ?a) ?shape)

Flattens and immediately reshapes an access pattern

?a \rightarrow (reshape (flatten ?a) ?shape)

Flattens and immediately reshapes an access pattern

(transpose
(squeeze
(compute dotProd
(cartProd
(windows ; ((N, 1, H', W'), (C, Kh, Kw))
(access activations 1)
(shape C Kh Kw)
(shape 1 Sh Sw))
(access weights 1))) ; ((O), (C, Kh, Kw))
1)
(list 0312))
(transpose
(squeeze
(compute dotProd
(cartProd
(reshape (flatten (windows ; ((N, 1, H', W'), (C, Kh, Kw))
(access activations 1)
(shape C Kh Kw)
(shape 1 Sh Sw))) ?shape0)
(reshape (flatten (access weights 1)) ?shape1))) ; ((O), (C, Kh, Kw))
1)
(list 0312))
(transpose
(squeeze
(compute dotProd
(cartProd
But our access pattern shapes haven't changed!
(reshape (flatten (windows ; ((N, 1, H', W'), (C, Kh, Kw))
(access activations 1)
(shape C Kh Kw)
(shape 1 Sh Sw))) ?shape0)
(reshape (flatten (access weights 1)) ?shape1))) ; ((O), (C, Kh, Kw))
1)
(list 0312))

```
(transpose
    (squeeze
    (compute dotProd
        (cartProd
    (reshape (flatten (windows ; ((N, 1, H', W'), (C, Kh, Kw))
            (access activations 1)
            (shape C Kh Kw)
                        We need to "bubble" the reshapes to the top
            (shape 1 Sh Sw))) ?shape0)
            (reshape (flatten (access weights 1)) ?shape1))) ;((O), (C, Kh, Kw))
    1)
(list 0 3 1 2))
```


(cartProd

(reshape ?a0 ?shape0)
(reshape ?a1 ?shape1)) \rightarrow (reshape (cartProd ?a0 ?a1) ?newShape)
(compute dotProd
(reshape ?a ?shape)) \rightarrow (reshape (compute dotProd ?a) ?newShape)
(transpose
(squeeze
(compute dotProd
(cartProd
(reshape (flatten (windows ; ((N, 1, H', W'), (C, Kh, Kw))
(access activations 1)
(shape C Kh Kw)
(shape 1 Sh Sw))) ?shape0)
(reshape (flatten (access weights 1)) ?shape1))) ; ((O), (C, Kh, Kw))
1)
(list 0312))
(transpose
(squeeze
(reshape (compute dotProd
(cartProd reshapes have been moved out, and the access patterns are flattened!
(flatten (windows ; ((N•1•H' $\left.\left.\mathrm{W}^{\prime}\right),(\mathrm{C} \cdot \mathrm{Kh} \cdot \mathrm{Kw})\right)$
(access activations 1)
(shape C Kh Kw)
(shape 1 Sh Sw)))
(flatten (access weights 1)))) ?shape) ; ((O), (C•Kh•Kw))
1)
(list 0312))
(compute dotProd (cartProd ?a0 ?a1))
(transpose
(squeeze

```
where ?a0 is of shape
```

where ?a0 is of shape

```
and ?a1 is of shape
```

```
and ?a1 is of shape
```

(reshape (compute dotProd
(cartProd
(flatten (windows ; ((N•1•H'W'), (C•Kh•Kw)) (access activations 1)

```
Our rewrite can now map
```

convolution to matrix multiplication hardware!
(shape C Kh Kw)
(shape 1 Sh Sw)))
(flatten (access weights 1)))) ?shape) ; ((O), (C•Kh $\cdot \mathrm{Kw})$)
1)
(list 0312))

$$
\text { ?a } \rightarrow \text { (reshape (flatten ?a) ?shape) }
$$

```
(cartProd
    (reshape ?a0 ?shape0)
    (reshape ?a1 ?shape1)) -> (reshape (cartProd ?a0 ?a1) ?newShape)
(compute dotProd
    (reshape ?a ?shape)) -> (reshape (compute dotProd ?a) ?newShape)
```

In conclusion,

In conclusion,
we have presented access patterns as a new tensor representation,

In conclusion,
we have presented access patterns as a new tensor representation,
we have used them to build the pure, low-level, binder free IR Glenside,

In conclusion,
we have presented access patterns as a new tensor representation,
we have used them to build the pure, low-level, binder free IR Glenside, and have shown how they enable hardware-level tensor program rewriting.

https://github.com/gussmith23/glenside

Glenside is an actively maintained Rust library! Try it out and open issues if you have questions!

\%ُsampl HPPLSE

CRISP
 Center for Research in Intelligent Storage and Processing in Memory

ada
Applications Driving Architectures

Thank you!

