
Pure Tensor Program Rewriting 
via Access Patterns

Gus Henry Smith, Andrew Liu, Steven Lyubomirsky, Scott Davidson, Joseph
McMahan, Michael Taylor, Luis Ceze, Zachary Tatlock

University of Washington

It reads an entire weight array
of shape rows by cols.

It reads an entire weight array
of shape rows by cols.

It then pushes n vectors of length
rows through the array.

It reads an entire weight array
of shape rows by cols.

It then pushes n vectors of length
rows through the array.

It computes the dot product of
every vector with every column

of the weights.

It reads an entire weight array
of shape rows by cols.

It then pushes n vectors of length
rows through the array.

It computes the dot product of
every vector with every column

of the weights.

Finally, it writes out n vectors of
length cols.

It reads an entire weight array
of shape rows by cols.

It then pushes n vectors of length
rows through the array.

It computes the dot product of
every vector with every column

of the weights.

Finally, it writes out n vectors of
length cols.

…but how do I
compile to it?

<custom compiler>

??? ???

<custom compiler>

??? ???

Building backends is hard, even
for compiler engineers!

It reads an entire weight array
of shape rows by cols.

It then pushes n vectors of length
rows through the array.

It computes the dot product of
every vector with every column

of the weights.

Finally, it writes out n vectors of
length cols.

Given so much detail about how the
hardware functions, could a compiler

map to it automatically?

It reads an entire weight array
of shape rows by cols.

It then pushes n vectors of length
rows through the array.

It computes the dot product of
every vector with every column

of the weights.

Finally, it writes out n vectors of
length cols.

It reads an entire weight array
of shape rows by cols.

It then pushes n vectors of length
rows through the array.

It computes the dot product of
every vector with every column

of the weights.

Finally, it writes out n vectors of
length cols.

Can we compile her description of the hardware into a
pattern, and search the workload for this pattern?

Can we compile her description of the hardware into a
pattern, and search the workload for this pattern?

Can we compile her description of the hardware into a
pattern, and search the workload for this pattern?

Can we compile her description of the hardware into a
pattern, and search the workload for this pattern?

Can we compile her description of the hardware into a
pattern, and search the workload for this pattern?

Hardware mapping is a
program rewriting problem!

…but current IRs are not up
to the task.

Three requirements for a hardware mapping IR:

Three requirements for a hardware mapping IR:

1. The language must be pure, enabling equational reasoning in term rewriting.

Three requirements for a hardware mapping IR:

1. The language must be pure, enabling equational reasoning in term rewriting.

2. The language must be low-level, letting us reason about hardware.

Three requirements for a hardware mapping IR:

1. The language must be pure, enabling equational reasoning in term rewriting.

2. The language must be low-level, letting us reason about hardware.

3. The language must not use binding, making term rewriting much easier.

Three requirements for a hardware mapping IR:

1. The language must be pure, enabling equational reasoning in term rewriting.

2. The language must be low-level, letting us reason about hardware.

3. The language must not use binding, making term rewriting much easier.

Binding structures—such as lambdas—provide expressiveness.

Three requirements for a hardware mapping IR:

1. The language must be pure, enabling equational reasoning in term rewriting.

2. The language must be low-level, letting us reason about hardware.

3. The language must not use binding, making term rewriting much easier.

Binding structures—such as lambdas—provide expressiveness.

However, they are difficult to deal with in term rewriting: for example, rewrites
must explicitly ensure that they do not introduce name conflicts.

Three requirements for a hardware mapping IR:

1. The language must be pure, enabling equational reasoning in term rewriting.

2. The language must be low-level, letting us reason about hardware.

3. The language must not use binding, making term rewriting much easier.

Binding structures—such as lambdas—provide expressiveness.

However, they are difficult to deal with in term rewriting: for example, rewrites
must explicitly ensure that they do not introduce name conflicts.

Thus, we seek to avoid using binding altogether!

Three examples of IRs from TVM:

Pure? Low-level? Can avoid
binding?

Relay ✅ ❌ ✅

TE ✅ ✅ ❌

TIR ❌ ✅ ❌

Three examples of IRs from TVM:

Pure? Low-level? Can avoid
binding?

Relay ✅ ❌ ✅

TE ✅ ✅ ❌

TIR ❌ ✅ ❌

Three examples of IRs from TVM:

Pure? Low-level? Can avoid
binding?

Relay ✅ ❌ ✅

TE ✅ ✅ ❌

TIR ❌ ✅ ❌

Three examples of IRs from TVM:

Pure? Low-level? Can avoid
binding?

Relay ✅ ❌ ✅

TE ✅ ✅ ❌

TIR ❌ ✅ ❌

Three examples of IRs from TVM:

Pure? Low-level? Can avoid
binding?

Relay ✅ ❌ ✅

TE ✅ ✅ ❌

TIR ❌ ✅ ❌

Three examples of IRs from TVM:

Pure? Low-level? Can avoid
binding?

Relay ✅ ❌ ✅

TE ✅ ✅ ❌

TIR ❌ ✅ ❌

Current tensor IRs fall short on our requirements!

We present our core abstraction, access patterns.

We present our core abstraction, access patterns.

Around them, we design Glenside, a pure, low-level,
binder-free tensor IR.

We present our core abstraction, access patterns.

Around them, we design Glenside, a pure, low-level,
binder-free tensor IR.

Finally, we demonstrate how Glenside enables low-level
tensor program rewriting.

Outline

• Motivating Example: Matrix Multiplication

• Access Pattern Definition

• Case Studies
- Reimplementing Matrix Multiplication with Access Patterns
- Implementing 2D Convolution with Access Patterns
- Hardware Mapping as Program Rewriting
- Flexible Hardware Mapping with Equality Saturation

Outline

• Motivating Example: Matrix Multiplication

• Access Pattern Definition

• Case Studies
- Reimplementing Matrix Multiplication with Access Patterns
- Implementing 2D Convolution with Access Patterns
- Hardware Mapping as Program Rewriting
- Flexible Hardware Mapping with Equality Saturation

We want to represent matrix multiplication in a way that

We want to represent matrix multiplication in a way that

1. is pure,

We want to represent matrix multiplication in a way that

1. is pure,

2. is low-level, and

We want to represent matrix multiplication in a way that

1. is pure,

2. is low-level, and

3. avoids binding.

Given matrices A and B, pair each
row of A with each column of B,
compute their dot products, and

arrange the results back into a matrix.

[,][, ,]

View matrices as lists of rows/columns

[,][, ,]

View matrices as lists of rows/columns

[,]×[, ,]

Take their Cartesian
product

[,(), (), (, ,),

), (, ,), (,()]

Every row paired
with every column

[,(), (), (, ,),

), (, ,), (),(

map dotProd

]

Map dot product
operator over every

row–column pair

[, , ,
, ,]

But there’s a problem!

[, , ,
, ,]

× =

≠ The values are correct,
but the shape is

missing!

[, , ,
, ,]

[, , ,
, ,]

⏪

[,(), (), (, ,),

), (, ,), (),(

map dot-product

]

⏪

[,(), (), (, ,),

), (, ,), (,()]

⏪

[,]×[, ,]

⏪

[,]×[, ,]

⏪⏸

[,]×[, ,]

⏪⏸
Shape information is

present here…

[,]×[, ,]

⏪⏸▶
Shape information is

present here…

[,(), (), (, ,),

), (, ,), (,()]

▶

[,(), (), (, ,),

), (, ,), (,()]

▶

…but absent here!

Cartesian product destroys
our shape information!

[,]×2D[, ,]

We introduce a new
Cartesian product

operator

[,(), ()],,

,),)],,

,), (,

(

)]

[

[(

[(]

2D Cartesian product
operator preserves

shape info

[,(), ()],,

,),)],,

,), (,

(

)]

[

[(

[(]

map dotProd

[,(), ()],,

,),)],,

,), (,

(

)]

[

[(

[(]

dotProd

dotProd

dotProd

But now, map operator
maps over wrong

dimension!

[,(), ()],,

,),)],,

,), (,

(

)]

[

[(

[(]

map2D dotProd

We also need a new
map operator

[,(),)],,

,),)],,

,), ,

(

)]

[

(

(]

dotProd

dotProd

dotProd

dotProd (

dotProd[

[(dotProd

2D map operator maps
over correct dimension

[,]

]

[,
,][,

,][

Shape information is
preserved!

×2D and map2D hard-code which dimensions are iterated over and
which dimensions are computed on…

×2D and map2D hard-code which dimensions are iterated over and
which dimensions are computed on…

…but if tensor shapes change, we’ll need entirely new operators!

×2D and map2D hard-code which dimensions are iterated over and
which dimensions are computed on…

…but if tensor shapes change, we’ll need entirely new operators!

Can we encode this in the tensor itself?

×2D and map2D hard-code which dimensions are iterated over and
which dimensions are computed on…

…but if tensor shapes change, we’ll need entirely new operators!

Can we encode this in the tensor itself?

(Yes! This is what access patterns do!)

Outline

• Motivating Example: Matrix Multiplication

• Access Pattern Definition

• Case Studies
- Reimplementing Matrix Multiplication with Access Patterns
- Implementing 2D Convolution with Access Patterns
- Hardware Mapping as Program Rewriting
- Flexible Hardware Mapping with Equality Saturation

(3, 4)

A tensor looks like…

[
,

,
]

((3), (4))

An access pattern looks like…

[
,

,
]

((3), (4))

access dimensions 
(iterated over)

An access pattern looks like…

[
,

,
]

((3), (4))

access dimensions 
(iterated over)

compute dimensions 
(computed on)

An access pattern looks like…

[
,

,
]

((3), (4))

access dimensions 
(iterated over)

compute dimensions 
(computed on)

A 3-length vector of
4-length vectors

A 3-length vector of
4-length vectors

An access pattern looks like…

((3,4), ())

[
,

,
]

[], , ,

[], , ,

[], , ,

access dimensions 
(iterated over)

compute dimensions 
(computed on)

An access pattern looks like…

((3,4), ())

[
,

,
]

[], , ,

[], , ,

[], , ,

access dimensions 
(iterated over)

compute dimensions 
(computed on)

A 3-length vector of
4-length vectors

A (3,4)-shaped tensor
of scalars

An access pattern looks like…

((), (3,4))

access dimensions 
(iterated over)

compute dimensions 
(computed on)

An access pattern looks like…

((), (3,4))

access dimensions 
(iterated over)

compute dimensions 
(computed on)

A 3-length vector of 4-
length vectors

A scalar-shaped tensor
of a single (3,4)-
shaped tensor

An access pattern looks like…

((), (3,4)) ((3,4), ())

[
,

,
]

[], , ,

[], , ,

[], , ,

[
,

,
]

((3), (4))

Same tensor, three possible views!Same tensor, three possible views!Same tensor, three possible views!

We can redefine common tensor and list operators with access pattern
semantics, which gives us the Glenside IR—details in paper!

Outline

• Motivating Example: Matrix Multiplication

• Access Pattern Definition

• Case Studies
- Reimplementing Matrix Multiplication with Access Patterns
- Implementing 2D Convolution with Access Patterns
- Hardware Mapping as Program Rewriting
- Flexible Hardware Mapping with Equality Saturation

Outline

• Motivating Example: Matrix Multiplication

• Access Pattern Definition

• Case Studies
- Reimplementing Matrix Multiplication with Access Patterns
- Implementing 2D Convolution with Access Patterns
- Hardware Mapping as Program Rewriting
- Flexible Hardware Mapping with Equality Saturation

Given matrices A and B, pair each
row of A with each column of B,
compute their dot products, and

arrange the results back into a matrix.

(compute dotProd
 (cartProd
 (access A 1)
 (transpose
 (access B 1)
 (list 1 0))))

; ((3), (4))

(compute dotProd
 (cartProd
 (access A 1)
 (transpose
 (access B 1)
 (list 1 0))))

; ((3), (4))
Access A as a list of its rows

(compute dotProd
 (cartProd
 (access A 1)
 (transpose
 (access B 1)
 (list 1 0))))

; ((4), (2))

; ((3), (4))

(compute dotProd
 (cartProd
 (access A 1)
 (transpose
 (access B 1)
 (list 1 0))))

; ((4), (2))
; ((2), (4))
; ((3), (4))

(compute dotProd
 (cartProd
 (access A 1)
 (transpose
 (access B 1)
 (list 1 0))))

; ((4), (2))
; ((2), (4))
; ((3), (4))

Access B as a list of
its rows, then

transpose into a list
of its columns

(compute dotProd
 (cartProd
 (access A 1)
 (transpose
 (access B 1)
 (list 1 0))))

; ((4), (2))
; ((2), (4))
; ((3), (4))
; ((3, 2), (2, 4))

(compute dotProd
 (cartProd
 (access A 1)
 (transpose
 (access B 1)
 (list 1 0))))

; ((4), (2))
; ((2), (4))
; ((3), (4))
; ((3, 2), (2, 4))

Create every row–column pair

(compute dotProd
 (cartProd
 (access A 1)
 (transpose
 (access B 1)
 (list 1 0))))

; ((4), (2))
; ((2), (4))
; ((3), (4))
; ((3, 2), (2, 4))
; ((3, 2), ())

(compute dotProd
 (cartProd
 (access A 1)
 (transpose
 (access B 1)
 (list 1 0))))

; ((4), (2))
; ((2), (4))
; ((3), (4))
; ((3, 2), (2, 4))
; ((3, 2), ())

Compute dot product of every row–column pair

Outline

• Motivating Example: Matrix Multiplication

• Access Pattern Definition

• Case Studies
- Reimplementing Matrix Multiplication with Access Patterns
- Implementing 2D Convolution with Access Patterns
- Hardware Mapping as Program Rewriting
- Flexible Hardware Mapping with Equality Saturation

[
[

Inputs: a batch of image/activation tensors and
a list of weight/filter tensors

[

[

Filter and region of image are
elementwise multiplied and the

results are summed

Filter and region of image are
elementwise multiplied and the

results are summed

[
[

One output channel for each input filter

(transpose

 (squeeze

 (compute dotProd

 (cartProd

 (windows

 (access activations 1)

 (shape C Kh Kw)

 (shape 1 Sh Sw))

 (access weights 1)))

 1)

 (list 0 3 1 2))

; ((O), (C, Kh, Kw))

S

Access weights as a list of 3D filters

(transpose

 (squeeze

 (compute dotProd

 (cartProd

 (windows

 (access activations 1)

 (shape C Kh Kw)

 (shape 1 Sh Sw))

 (access weights 1)))

 1)

 (list 0 3 1 2))

; ((O), (C, Kh, Kw))

S

Access activations as a batch of 3D images

; ((N), (C, H, W))

(transpose

 (squeeze

 (compute dotProd

 (cartProd

 (windows

 (access activations 1)

 (shape C Kh Kw)

 (shape 1 Sh Sw))

 (access weights 1)))

 1)

 (list 0 3 1 2))

; ((O), (C, Kh, Kw))

S

Form windows over input images

; ((N), (C, H, W))

(transpose

 (squeeze

 (compute dotProd

 (cartProd

 (windows

 (access activations 1)

 (shape C Kh Kw)

 (shape 1 Sh Sw))

 (access weights 1)))

 1)

 (list 0 3 1 2))

; ((O), (C, Kh, Kw))

S

These parameters control
window shape and strides

; ((N), (C, H, W))

(transpose

 (squeeze

 (compute dotProd

 (cartProd

 (windows

 (access activations 1)

 (shape C Kh Kw)

 (shape 1 Sh Sw))

 (access weights 1)))

 1)

 (list 0 3 1 2))

; ((O), (C, Kh, Kw))

S
At each location in each new image, there

is a (C, Kh, Kw)-shaped window

; ((N), (C, H, W))
; ((N, 1, H’, W’), (C, Kh, Kw))

(transpose

 (squeeze

 (compute dotProd

 (cartProd

 (windows

 (access activations 1)

 (shape C Kh Kw)

 (shape 1 Sh Sw))

 (access weights 1)))

 1)

 (list 0 3 1 2))

; ((O), (C, Kh, Kw))

S

Pair windows with filters

; ((N), (C, H, W))
; ((N, 1, H’, W’), (C, Kh, Kw))
; ((N, 1, H’, W’, O), (2, C, Kh, Kw))

(transpose

 (squeeze

 (compute dotProd

 (cartProd

 (windows

 (access activations 1)

 (shape C Kh Kw)

 (shape 1 Sh Sw))

 (access weights 1)))

 1)

 (list 0 3 1 2))

; ((O), (C, Kh, Kw))

SCompute dot product of each window–filter pair

; ((N), (C, H, W))
; ((N, 1, H’, W’), (C, Kh, Kw))
; ((N, 1, H’, W’, O), (2, C, Kh, Kw))
; ((N, 1, H’, W’, O), ())

(transpose

 (squeeze

 (compute dotProd

 (cartProd

 (windows

 (access activations 1)

 (shape C Kh Kw)

 (shape 1 Sh Sw))

 (access weights 1)))

 1)

 (list 0 3 1 2))

; ((O), (C, Kh, Kw))

Remove and rearrange dimensions

; ((N), (C, H, W))
; ((N, 1, H’, W’), (C, Kh, Kw))
; ((N, 1, H’, W’, O), (2, C, Kh, Kw))
; ((N, 1, H’, W’, O), ())

; ((N, O, H’, W’), ())

Outline

• Motivating Example: Matrix Multiplication

• Access Pattern Definition

• Case Studies
- Reimplementing Matrix Multiplication with Access Patterns
- Implementing 2D Convolution with Access Patterns
- Hardware Mapping as Program Rewriting
- Flexible Hardware Mapping with Equality Saturation

It reads an entire weight array
of shape rows by cols.

It then pushes n vectors of length
rows through the array.

It computes the dot product of
every vector with every column

of the weights.

Finally, it writes out n vectors of
length cols.

Can we represent hardware as
a searchable pattern?

(compute dotProd
 (cartProd ?a0 ?a1))

 where ?a0 is of shape
 ((?n), (?rows))

 and ?a1 is of shape
 ((?cols), (?rows))

With Glenside, we can!

(compute dotProd
 (cartProd ?a0 ?a1))

 where ?a0 is of shape
 ((?n), (?rows))

 and ?a1 is of shape
 ((?cols), (?rows))

(systolicArray ?rows ?cols ?a0 ?a1)

We can directly rewrite to hardware invocations!

(compute dotProd

 (cartProd

 (access A 1)

 (transpose

 (access B 1)

 (list 1 0))))

(compute dotProd
 (cartProd ?a0 ?a1))

 where ?a0 is of shape
 ((?n), (?rows))

 and ?a1 is of shape
 ((?cols), (?rows))

(systolicArray ?rows ?cols ?a0 ?a1)

(compute dotProd

 (cartProd

 (access A 1)

 (transpose

 (access B 1)

 (list 1 0))))

(compute dotProd
 (cartProd ?a0 ?a1))

 where ?a0 is of shape
 ((?n), (?rows))

 and ?a1 is of shape
 ((?cols), (?rows))

(systolicArray ?rows ?cols ?a0 ?a1)

(systolicArray

 4 2

 (access A 1)

 (transpose

 (access B 1)

 (list 1 0))))

(compute dotProd
 (cartProd ?a0 ?a1))

 where ?a0 is of shape
 ((?n), (?rows))

 and ?a1 is of shape
 ((?cols), (?rows))

(systolicArray ?rows ?cols ?a0 ?a1)

Outline

• Motivating Example: Matrix Multiplication

• Access Pattern Definition

• Case Studies
- Reimplementing Matrix Multiplication with Access Patterns
- Implementing 2D Convolution with Access Patterns
- Hardware Mapping as Program Rewriting
- Flexible Hardware Mapping with Equality Saturation

(transpose

 (squeeze

 (compute dotProd

 (cartProd

 (windows

 (access activations 1)

 (shape C Kh Kw)

 (shape 1 Sh Sw))

 (access weights 1)))

 1)

 (list 0 3 1 2))

(compute dotProd

 (cartProd

 (access A 1)

 (transpose

 (access B 1)

 (list 1 0))))

(transpose

 (squeeze

 (compute dotProd

 (cartProd

 (windows

 (access activations 1)

 (shape C Kh Kw)

 (shape 1 Sh Sw))

 (access weights 1)))

 1)

 (list 0 3 1 2))

(compute dotProd

 (cartProd

 (access A 1)

 (transpose

 (access B 1)

 (list 1 0))))

A 3-length vector of 4-length
vectors

Convolution and matrix
multiplication have similar

structure!

(transpose

 (squeeze

 (compute dotProd

 (cartProd

 (windows

 (access activations 1)

 (shape C Kh Kw)

 (shape 1 Sh Sw))

 (access weights 1)))

 1)

 (list 0 3 1 2))

(compute dotProd
 (cartProd ?a0 ?a1))

 where ?a0 is of shape
 ((?n), (?rows))

 and ?a1 is of shape
 ((?cols), (?rows))

Can we apply our hardware rewrite?

(transpose

 (squeeze

 (compute dotProd

 (cartProd

 (windows

 (access activations 1)

 (shape C Kh Kw)

 (shape 1 Sh Sw))

 (access weights 1)))

 1)

 (list 0 3 1 2))

(compute dotProd
 (cartProd ?a0 ?a1))

 where ?a0 is of shape
 ((?n), (?rows))

 and ?a1 is of shape
 ((?cols), (?rows))

; ((N, 1, H’, W’), (C, Kh, Kw))

; ((O), (C, Kh, Kw)) Our access pattern shapes do not
pass the rewrite’s conditions

(transpose

 (squeeze

 (compute dotProd

 (cartProd

 (windows

 (access activations 1)

 (shape C Kh Kw)

 (shape 1 Sh Sw))

 (access weights 1)))

 1)

 (list 0 3 1 2))

(compute dotProd
 (cartProd ?a0 ?a1))

 where ?a0 is of shape
 ((?n), (?rows))

 and ?a1 is of shape
 ((?cols), (?rows))

; ((?n), (?rows))

; ((?cols), (?rows))

Can we flatten our access patterns?

?a → (reshape (flatten ?a) ?shape)

Flattens and immediately reshapes an access pattern

?a → (reshape (flatten ?a) ?shape)

Flattens and immediately reshapes an access pattern

(transpose

 (squeeze

 (compute dotProd

 (cartProd

 (windows

 (access activations 1)

 (shape C Kh Kw)

 (shape 1 Sh Sw))

 (access weights 1)))

 1)

 (list 0 3 1 2))

; ((N, 1, H’, W’), (C, Kh, Kw))

; ((O), (C, Kh, Kw))

(transpose

 (squeeze

 (compute dotProd

 (cartProd

 (reshape (flatten (windows

 (access activations 1)

 (shape C Kh Kw)

 (shape 1 Sh Sw))) ?shape0)

 (reshape (flatten (access weights 1)) ?shape1)))

 1)

 (list 0 3 1 2))

; ((N, 1, H’, W’), (C, Kh, Kw))

; ((O), (C, Kh, Kw))

(transpose

 (squeeze

 (compute dotProd

 (cartProd

 (reshape (flatten (windows

 (access activations 1)

 (shape C Kh Kw)

 (shape 1 Sh Sw))) ?shape0)

 (reshape (flatten (access weights 1)) ?shape1)))

 1)

 (list 0 3 1 2))

; ((N, 1, H’, W’), (C, Kh, Kw))

; ((O), (C, Kh, Kw))

But our access pattern shapes haven’t changed!

(transpose

 (squeeze

 (compute dotProd

 (cartProd

 (reshape (flatten (windows

 (access activations 1)

 (shape C Kh Kw)

 (shape 1 Sh Sw))) ?shape0)

 (reshape (flatten (access weights 1)) ?shape1)))

 1)

 (list 0 3 1 2))

; ((N, 1, H’, W’), (C, Kh, Kw))

; ((O), (C, Kh, Kw))

We need to “bubble” the reshapes to the top

(cartProd
 (reshape ?a0 ?shape0)
 (reshape ?a1 ?shape1)) → (reshape (cartProd ?a0 ?a1) ?newShape)

(compute dotProd
 (reshape ?a ?shape)) → (reshape (compute dotProd ?a) ?newShape)

These rewrites “bubble” reshape through cartProd and compute dotProd

(transpose

 (squeeze

 (compute dotProd

 (cartProd

 (reshape (flatten (windows

 (access activations 1)

 (shape C Kh Kw)

 (shape 1 Sh Sw))) ?shape0)

 (reshape (flatten (access weights 1)) ?shape1)))

 1)

 (list 0 3 1 2))

; ((N, 1, H’, W’), (C, Kh, Kw))

; ((O), (C, Kh, Kw))

(transpose

 (squeeze

 (reshape (compute dotProd

 (cartProd

 (flatten (windows

 (access activations 1)

 (shape C Kh Kw)

 (shape 1 Sh Sw)))

 (flatten (access weights 1)))) ?shape)

 1)

 (list 0 3 1 2))

; ((N · 1 · H’ · W’), (C · Kh · Kw))

; ((O), (C · Kh · Kw))

reshapes have been moved out, and the access patterns are flattened!

(transpose

 (squeeze

 (reshape (compute dotProd

 (cartProd

 (flatten (windows

 (access activations 1)

 (shape C Kh Kw)

 (shape 1 Sh Sw)))

 (flatten (access weights 1)))) ?shape)

 1)

 (list 0 3 1 2))

; ((N · 1 · H’ · W’), (C · Kh · Kw))

; ((O), (C · Kh · Kw))

(compute dotProd
 (cartProd ?a0 ?a1))

 where ?a0 is of shape
 ((?n), (?rows))

 and ?a1 is of shape
 ((?cols), (?rows))

Our rewrite can now map
convolution to matrix

multiplication hardware!

(cartProd
 (reshape ?a0 ?shape0)
 (reshape ?a1 ?shape1)) → (reshape (cartProd ?a0 ?a1) ?newShape)

(compute dotProd
 (reshape ?a ?shape)) → (reshape (compute dotProd ?a) ?newShape)

?a → (reshape (flatten ?a) ?shape)

These rewrites rediscover the im2col transformation!

In conclusion,

In conclusion,

we have presented access patterns as a new tensor representation,

In conclusion,

we have presented access patterns as a new tensor representation,

we have used them to build the pure, low-level, binder free IR Glenside,

In conclusion,

we have presented access patterns as a new tensor representation,

we have used them to build the pure, low-level, binder free IR Glenside,

and have shown how they enable hardware-level tensor program rewriting.

https://github.com/gussmith23/glenside
Glenside is an actively maintained Rust library! Try it

out and open issues if you have questions!

https://github.com/gussmith23/glenside

Thank you!

