
Combining Precision Tuning and Rewriting

Brett Saiki, Oliver Flatt,
Chandrakana Nandi, Pavel Panchekha, Zachary Tatlock

Error

Latency

Error

Latency

🎮

Error

Latency

🎮

Error

Latency

🎮

🚀

Error

Latency

🎮

🚀

Error

Latency

🎮

🚀

No one tradeoff is right for every application.

Engineers need to explore the Pareto frontier of optimal
accuracy vs. speed candidate implementations!

Error

Latency

🎮

🚀

No one tradeoff is right for every application.

Engineers need to explore the Pareto frontier of optimal
accuracy vs. speed candidate implementations!

Precision Tuning

e.g., lower 64-bit ⇒ 32-bit

Error

Latency

🎮

🚀

No one tradeoff is right for every application.

Engineers need to explore the Pareto frontier of optimal
accuracy vs. speed candidate implementations!

Precision Tuning

e.g., lower 64-bit ⇒ 32-bit

Program Rewriting

e.g., take series expansion

Precision Tuning Program Rewriting

Precision Tuning

Lower bitwidth ⇒ higher throughput

● Major barrier: the memory wall!

● Enable more vectorization, etc.

Difficult to tell where lowering is safe

● Accums. large, but elts small?

● Past work adapts delta debugging

○ [Khalifa et al. FTSCS ‘19]

○ [Rubio-González et al. SC ‘13]

Program Rewriting

Precision Tuning

Lower bitwidth ⇒ higher throughput

● Major barrier: the memory wall!

● Enable more vectorization, etc.

Difficult to tell where lowering is safe

● Accums. large, but elts small?

● Past work adapts delta debugging

○ [Khalifa et al. FTSCS ‘19]

○ [Rubio-González et al. SC ‘13]

Avoid pitfalls and/or use coarser approx

● Avoid cancellation, intro series

● e.g., generally want (x + 1) - x ⇒ 1

Difficult to find / carry out good rewrites

● Need to guide rewrite search

● Past work applies PL synthesis

○ [Schkufza et al. PLDI ‘14]

○ [Panchekha et al. PLDI ‘15]

Program Rewriting

How to optimize?

How to optimize via precision tuning?

Error

Latency

🎮

🚀

How to optimize via precision tuning?

Error

Latency

🎮

🚀

How to optimize via precision tuning?

Lower to 32-bit

Error

Latency

🎮

🚀

How to optimize via precision tuning?

Raise to 80-bit

Error

Latency

🎮

🚀

How to optimize via rewriting?

Error

Latency

🎮

🚀

How to optimize via rewriting?

Just simplification!

Error

Latency

🎮

🚀

How to optimize via rewriting?

Series expansions

Optimizing in general: precision tuning OR rewriting ?

Optimizing in general: precision tuning OR rewriting ?

When and how to use?

● Tune then rewrite?

● Rewrite then tune?

● Alternate? Run to fixpoint?

● Share accuracy analyses?

Optimizing in general: precision tuning AND rewriting !

How to optimize via precision tuning AND rewriting !

How to optimize via precision tuning AND rewriting !

Different techniques
for different inputs

Sometimes just
rewrite

Sometimes rewrite + tune

Optimizing in general: precision tuning AND rewriting !

Our Result
Combine precision tuning and rewriting to produce a rich
set of Pareto-optimal accuracy versus speed trade-offs.

Optimizing in general: precision tuning AND rewriting !

Our Result
Combine precision tuning and rewriting to produce a rich
set of Pareto-optimal accuracy versus speed trade-offs.

Key Insights:
● Finer-grained interleavings ⇒ better Pareto frontiers
● Precision tuning can be rephrased as a rewriting problem
● “Local Error Analysis” helps both precision tuning and rewriting

Optimizing in general: precision tuning AND rewriting !

Our Result
Combine precision tuning and rewriting to produce a rich
set of Pareto-optimal accuracy versus speed trade-offs.

Key Insights:
● Finer-grained interleavings ⇒ better Pareto frontiers
● Precision tuning can be rephrased as a rewriting problem
● “Local Error Analysis” helps both precision tuning and rewriting

Outline

❏ Herbie: Improving Accuracy via Rewriting

● Key Insight: local error guides rewriting

❏ Pherbie: Extending Herbie with Precision Tuning

● Key Insight: local error also guides precision tuning!

❏ Evaluation: Applying Pherbie to Classics + Graphics

● Key Insight: Finer-grained interleaving → better optimization!

Optimizing in general: precision tuning AND rewriting !

Our Result
Combine precision tuning and rewriting to produce a rich
set of Pareto-optimal accuracy versus speed trade-offs.

Key Insights:
● Finer-grained interleavings ⇒ better Pareto frontiers
● Precision tuning can be rephrased as a rewriting problem
● “Local Error Analysis” helps both precision tuning and rewriting

Rewriting

Developed continuously since 2015

Improves Accuracy Automatically

Rewriting Only

Output

Input Rewriting

Developed continuously since 2015

Improves Accuracy Automatically

Rewriting Only

P'P

Sample Points
Measure Error

Rewrites

Magic New Program
Less Error

Candidates

Improve Loop

How
To

Pick?

Input

Error

P'P

Candidates

How
To

Pick?

How To Pick?
Input

Error

Improve Loop

P'P

Candidates

How
To

Pick?

How To Pick?
Input

Error

Improve Loop

P'P

RegimesCandidates

Improve Loop
Combine

Candidates

P'P

PruneRewrite

Generate Filter

Target High
Error A+B → B+A Other

Techniques
Keep
Accurate
Programs

P'P RegimesCandidates

Localize 60.1

1/

-

Exact Exact

Approximate

Output

Input

Output

Input

Small And
Accurate!

Accurate, But
Slow!

Outline

✓ Herbie: Improving Accuracy via Rewriting

● Key Insight: local error guides rewriting

❏ Pherbie: Extending Herbie with Precision Tuning

● Key Insight: local error also guides precision tuning!

❏ Evaluation: Applying Pherbie to Classics + Graphics

● Key Insight: Finer-grained interleaving → better optimization!

Pherbie Starting Point: Herbie

PruneRewrite

P’P RegimesCandidates

Localize

Pherbie: Extending Herbie to Combine Tuning + Rewriting

PruneRewrite

P1

P RegimesCandidates

Localize

Pi

PN

Pherbie: Extending Herbie to Combine Tuning + Rewriting

PruneRewrite

P RegimesCandidates

Localize

P1
Pi

PN

Pherbie: Extending Herbie to Combine Tuning + Rewriting

PruneRewrite

P1

P RegimesCandidates

Localize

Pi

PN

Pherbie: Precision Rewrites

Herbie

Pherbie

Single global
precision

Pherbie: Precision Rewrites

Herbie

Pherbie

Single global
precision

Precision-specific
operators

Pherbie: Precision Rewrites

Herbie

Pherbie

Single global
precision

Precision-specific
operators

Precision rewrites

Pherbie: Precision Rewrites

Herbie

Pherbie

Rewriting

Rewriting

Precision tuning

Pherbie: Precision Rewrites

Herbie

Pherbie
Pherbie can use the same rewriting machinery as Herbie!

Pherbie: Precision Rewrites

Herbie

Pherbie
Pherbie can use the same rewriting machinery as Herbie!

But where should Pherbie apply precision rewrites?

Pherbie: Guide Tuning w/ Local Error

Pherbie: Guide Tuning w/ Local Error

● Rewriting to increase precision at
locations w/ high local error
improves accuracy.

Pherbie: Guide Tuning w/ Local Error

● Rewriting to increase precision at
locations w/ high local error
improves accuracy.

● Rewriting to decrease precision at
locations w/ low local error
improves speed.

Pherbie: Extending Herbie to Combine Tuning + Rewriting

PruneRewrite

P RegimesCandidates

Localize

P1
Pi

PN

Pherbie: Pruning

Prune

P Candidates

Pruning in general

Generates many
candidates

Discards
“non-optimal”
candidates

Pherbie: Pruning

Pruning in Herbie:
Criteria

Must be more accurate than every
other expression on at least one

sampled point

Prune

P Candidates

Pherbie: Pruning

Pruning in Herbie:
Criteria

Must be more accurate than every
other expression on at least one

sampled point

Prune

P Candidates

Use in Pherbie?

Accuracy only ⇒ slow expressions

Pherbie: Pruning

Pruning in Pherbie:

Prune

P Candidates

Criteria
Must be more accurate on at least

one sampled point than every
other expression at or below the

cost of the candidate

Pherbie: Pruning

Prune

P Candidates

Criteria
Must be more accurate on at least

one sampled point than every
other expression at or below the

cost of the candidate

What is “cost”? How do we measure it?

Pruning in Pherbie:

Pherbie: Pruning

Pruning in Pherbie:

Candidate Table

Pruning

Criteria
Must be more accurate on at least

one sampled point than every
other expression at or below the

cost of the candidate

What is “cost”? How do we measure it?

Too expensive to measure precise latency of each candidate

● Need to evaluate candidate many times to get accurate estimator

● Pherbie produces thousands of candidates

Pherbie: Pruning

Pruning in Pherbie:

Candidate Table

Pruning

Criteria
Must be more accurate on at least

one sampled point than every
other expression at or below the

cost of the candidate

What is “cost”? How do we measure it?

Key Insight: Only need relative speed comparison → use a simple cost model!

● Quickly estimates latency

● Sufficient for relative ordering of candidates

Expression Cost

Pherbie: Pruning

Pruning in Pherbie:

Candidate Table

Pruning

Criteria
Must be more accurate on at least

one sampled point than every
other expression at or below the

cost of the candidate

What is “cost”? How do we measure it?

Example cost model:

● Operators assigned a cost:
○ Arithmetic: low number (1)
○ Library functions: large number (100)

● Multiply operator cost by bitwidth of representation

● Conditionals: branch conditions cost + largest branch cost

Expression Cost

Pherbie: Pruning

Pruning in Pherbie:

Candidate Table

Pruning

Criteria
Must be more accurate on at least

one sampled point than every
other expression at or below the

cost of the candidate

What is “cost”? How do we measure it?

Cost models in general

● Simple cost models are good enough

● Better cost models exist

● Pherbie is modular, so users can plug and play

Expression Cost

Pherbie: Pruning

At each sampled point

Error

Latency

Keeps accurate
expressions

Pherbie: Pruning

At each sampled point

Error

Latency

Keeps accurate
expressions

Keeps fast
expressions as well!

Pherbie: Pruning

At each sampled point

Error

Latency

Keeps accurate
expressions

Keeps fast
expressions as well!

And every Pareto-optimal
candidate in between

Pherbie: Extending Herbie to Combine Tuning + Rewriting

PruneRewrite

P1

P RegimesCandidates

Localize

Pi

PN

Pherbie: Regimes

Pherbie: accuracy and cost

● Need to produce a Pareto frontier!

● Iteratively run Herbie’s regimes
algorithm on subset of candidates

RegimesCandidates P1
Pi

PN

Pherbie: Regimes

Pherbie regimes algorithm

1. Run Herbie regimes algorithm on
subset cheaper than cost bound

Pherbie: Regimes

Pherbie regimes algorithm

1. Run Herbie regimes algorithm on
subset cheaper than cost bound

2. Decrease cost bound so next iteration
produces different candidate

Pherbie: Regimes

Pherbie regimes algorithm

1. Run Herbie regimes algorithm on
subset cheaper than cost bound

2. Decrease cost bound so next iteration
produces different candidate

3. Repeat until no candidate is below cost
bound

Pherbie Regimes Example : Iter 1 / 5

while 0 < |Candidates| :

p = ExtractMinError(Candidates)

Candidates.removeAboveCost(p)

Error

Latency

Candidates

Pherbie Regimes Example : Iter 1 / 5

while 0 < |Candidates| :

p = ExtractMinError(Candidates)

Candidates.removeAboveCost(p)

Error

Latency

↯

Candidates

Pherbie Regimes Example : Iter 1 / 5

while 0 < |Candidates| :

p = ExtractMinError(Candidates)

Candidates.removeAboveCost(p)

Error

Latency

↯

Candidates

Pherbie Regimes Example : Iter 2 / 5

while 0 < |Candidates| :

p = ExtractMinError(Candidates)

Candidates.removeAboveCost(p)

Error

Latency

Candidates

Pherbie Regimes Example : Iter 2 / 5

while 0 < |Candidates| :

p = ExtractMinError(Candidates)

Candidates.removeAboveCost(p)

Error

Latency

Candidates

Pherbie Regimes Example : Iter 2 / 5

while 0 < |Candidates| :

p = ExtractMinError(Candidates)

Candidates.removeAboveCost(p)

Error

Latency

Candidates

Pherbie Regimes Example : Iter 3 / 5

while 0 < |Candidates| :

p = ExtractMinError(Candidates)

Candidates.removeAboveCost(p)

Error

Latency

Candidates

Pherbie Regimes Example : Iter 3 / 5

while 0 < |Candidates| :

p = ExtractMinError(Candidates)

Candidates.removeAboveCost(p)

Error

Latency

Candidates

Pherbie Regimes Example : Iter 3 / 5

while 0 < |Candidates| :

p = ExtractMinError(Candidates)

Candidates.removeAboveCost(p)

Error

Latency

Candidates

Pherbie Regimes Example : Iter 4 / 5

while 0 < |Candidates| :

p = ExtractMinError(Candidates)

Candidates.removeAboveCost(p)

Error

Latency

Candidates

Pherbie Regimes Example : Iter 4 / 5

while 0 < |Candidates| :

p = ExtractMinError(Candidates)

Candidates.removeAboveCost(p)

Error

Latency

Candidates

Pherbie Regimes Example : Iter 4 / 5

while 0 < |Candidates| :

p = ExtractMinError(Candidates)

Candidates.removeAboveCost(p)

Error

Latency

Candidates

Pherbie Regimes Example : Iter 5 / 5

while 0 < |Candidates| :

p = ExtractMinError(Candidates)

Candidates.removeAboveCost(p)

Error

Latency

Candidates

Pherbie Regimes Example : Iter 5 / 5

while 0 < |Candidates| :

p = ExtractMinError(Candidates)

Candidates.removeAboveCost(p)

Error

Latency

Candidates

Pherbie Regimes Example : Iter 5 / 5

while 0 < |Candidates| :

p = ExtractMinError(Candidates)

Candidates.removeAboveCost(p)

Error

Latency

Candidates

Pherbie Regimes Example : Iter 5 / 5

while 0 < |Candidates| :

p = ExtractMinError(Candidates)

Candidates.removeAboveCost(p)

Error

Latency

Candidates

Outline

✓ Herbie: Improving Accuracy via Rewriting

● Key Insight: local error guides rewriting

✓ Pherbie: Extending Herbie with Precision Tuning

● Key Insight: local error also guides precision tuning!

❏ Evaluation: Applying Pherbie to Classics + Graphics

● Key Insight: Finer-grained interleaving → better optimization!

Evaluation: Benchmark Suites

● NMSE - Numerical Methods for Scientists and Engineers (Hamming, 1986)
○ Standard textbook on numerical analysis

● PBRT - Physically Based Rendering (Pharr et. al, 2016)
○ Open-source textbook describing rendering photorealistic scenes

Evaluation

Curve Intersection (PBRT)

Pherbie produces Pareto-optimal implementations

Evaluation

Curve Intersection (PBRT)

Pherbie produces Pareto-optimal implementations

Herbie’s result

Evaluation

Nearby Tangent Difference (NMSE)

Pherbie produces Pareto-optimal implementations

Evaluation

Nearby Tangent Difference (NMSE)

Pherbie produces Pareto-optimal implementations

Herbie’s result
On Pareto frontier!

Evaluation

Beckmann Distribution Sampling (PBRT)

Pherbie produces Pareto-optimal implementations

Evaluation

Beckmann Distribution Sampling (PBRT)

Pherbie produces Pareto-optimal implementations

Herbie’s result

More optimal

Evaluation

Comparing different methods of using rewriting and precision tuning:

Finer interleavings ⇒ Better Pareto frontier

Single Technique Chaining Techniques Interleaving Techniques

Herbie

Herbie x100 (RW)

Tuning-only (BFPT)

Rewrite-then-tune
(RW+BFPT)

Tune-then-rewrite
(BFPT+RW)

Coarse-grained
interleaving (PP)

Fine-grained interleaving
(Pherbie)

Evaluation

Method:

● For a given cumulative cost, what is the minimum cumulative error we can
achieve by selecting one output expression from each benchmark?

Finer interleavings ⇒ Better Pareto frontier

NMSE PBRT

Evaluation

Suite: NMSE

Finer interleavings ⇒ Better Pareto frontier

NMSE contains
high-error examples

Evaluation

Suite: PBRT

Finer interleavings ⇒ Better Pareto frontier

PBRT is “real world” code

Outline

✓ Herbie: Improving Accuracy via Rewriting

● Key Insight: local error guides rewriting

✓ Pherbie: Extending Herbie with Precision Tuning

● Key Insight: local error also guides precision tuning!

✓ Evaluation: Applying Pherbie to Classics + Graphics

● Key Insight: Finer-grained interleaving → better optimization!

Related Work
○ Scalable error analysis

■ [Gopalakrishnan et al. SC’20]

○ Improving accuracy of imperative floating point programs

■ [Martel et al. AFM’17]

○ Tunable precision of floating point programs

■ [Schkufza et al. PLDI ‘14]

○ Sound compilation of real computations

■ [Darulova et al. POPL’14]

○ Debugging and correct rounding of floating point programs

■ [Nagarakatte et al. POPL’21, PLDI’21]

Team and Acknowledgments

Brett Saiki
UW

Oliver Flatt
Univ. of Utah

Chandrakana Nandi
UW

Pavel Panchekha
Univ. of Utah

Zachary Tatlock
UW

Pherbie: Precision Tuning + Rewriting
✓ Herbie: Improving Accuracy via Rewriting

● Key Insight: local error guides rewriting

✓ Pherbie: Extending Herbie with Precision Tuning

● Key Insight: local error also guides precision tuning!

✓ Evaluation: Applying Pherbie to Classics + Graphics

● Key Insight: Finer-grained interleaving → better optimization!

THANK YOU!

herbie.uwplse.org

